

EMC TEST REPORT

For

Topway EM Enterprise Ltd.

Kids Wireless Headphones

Test Model: 17LY79

Additional Model No.: GKIDBTB18, GKIDBTP18

Prepared for

Topway EM Enterprise Ltd.

Address

8F., Block B, Building 6, Baoneng Science and technology park, Qingxiang RD., Qinghu Industrial Park, Longhua New

District, Shenzhen, GD, China 518109

District, Shenzhen, Guangdong, China

Prepared by Address

Shenzhen LCS Compliance Testing Laboratory Ltd.

Room 101, 201, Building A and Room 301, Building C, Juji

Industrial Park, Yabianxueziwei, Shajing Street, Bao'an

Tel

(+86)755-82591330

Fax Web (+86)755-82591332 www.LCS-cert.com

Mail

webmaster@LCS-cert.com

Date of receipt of test sample

November 10, 2021

Number of tested samples

: 2

Serial number

Prototype

Date of Test

November 10, 2021 ~ November 17, 2021

Date of Report

: November 22, 2021

EMC TEST REPORT

ETSI EN 301 489-1 V2.2.3 (2019-11) & ETSI EN 301 489-17 V3.2.4 (2020-09)

Report Reference No.: LCS211103094AEA

Date Of Issue.....: November 22, 2021

Testing Laboratory Name.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address.....: Room 101, 201, Building A and Room 301, Building C, Juji

Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District,

Shenzhen, Guangdong, China

Testing Location/ Procedure.....: Full application of Harmonised standards■

Partial application of Harmonised standards

Other standard testing method

Applicant's Name.....: Topway EM Enterprise Ltd.

Address.....: 8F., Block B, Building 6, Baoneng Science and technology park,

Qingxiang RD., Qinghu Industrial Park, Longhua New District,

Shenzhen, GD, China 518109

Test Specification

Standard.....: ETSI EN 301 489-1 V2.2.3 (2019-11)

ETSI EN 301 489-17 V3.2.4 (2020-09)

Test Report Form No.: LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF....: Dated 2017-06

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: Kids Wireless Headphones

Trade Mark....: N/A

Test Model....: 17LY79

Ratings....:: Input: 5V=160mA

Result: Positive

Compiled by:

Supervised by:

Approved by:

Keyin Huang

Kevin Huang/ Administrator

Jin Wang/ Technique principal

Gavin Liang/ Manager

EMC -- TEST REPORT

: 1/LY/9
: Kids Wireless Headphones
: Topway EM Enterprise Ltd.
: 8F., Block B, Building 6, Baoneng Science and technology park, Qingxiang RD., Qinghu Industrial Park, Longhua New District, Shenzhen, GD, China 518109
: /
: /
: Topway EM Enterprise Ltd.
: 8F., Block B, Building 6, Baoneng Science and technology park, Qingxiang RD., Qinghu Industrial Park, Longhua New District, Shenzhen, GD, China 518109
: /
: /
: Topway EM Enterprise Ltd.
: 8F., Block B, Building 6, Baoneng Science and technology park, Qingxiang RD., Qinghu Industrial Park, Longhua New District, Shenzhen, GD, China 518109
: /
: /

Test Result Positive

The test report merely corresponds to the test sample.

Shenzhen LCS Compliance Testing Laboratory Ltd..

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Report Version	Issue Date	Revisions	Revised By
000	November 22, 2021	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1. PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	6
1.2. OBJECTIVE	
1.3. RELATED SUBMITTAL(S)/GRANT(S)	
1.4. TEST METHODOLOGY	8
1.6. SUPPORT EQUIPMENT LIST	
1.7. External I/O	
1.8. Measurement Uncertainty	9
1.9. DESCRIPTION OF TEST MODES	9
2. SUMMARY OF TEST RESULTS	10
3. TEST RESULTS	11
3.1. LINE CONDUCTED EMISSION	
3.2. CONDUCTED EMISSION (WIRED NETWORK PORT)	13
3.3. RADIATED DISTURBANCE	14
3.4. RF Electromagnetic Field (80 MHz - 6000 MHz)	1/
4. GENERAL PERFORMANCE CRITERIA FOR IMMUNITY TEST	
4.1. PERFORMANCE CRITERIA FOR CONTINUOUS PHENOMENA APPLIED TO TRANSMITTER (CT)	
4.2. PERFORMANCE CRITERIA FOR TRANSIENT PHENOMENA APPLIED TO TRANSMITTER (TT)	
4.3. PERFORMANCE CRITERIA FOR CONTINUOUS PHENOMENA APPLIED TO RECEIVER (CR)	
•	
5. LIST OF MEASURING EQUIPMENT	
NOTE: NCR NO CALIBRATION REQUIREMENT	23
6. PHOTOGRAPHS OF TEST SETUP	24
7. PHOTOGRAPHS OF THE EUT	24

1. GENERAL INFORMATION

1.1. Product Description for Equipment Under Test (EUT)

EUT : Kids Wireless Headphones

Test Model : 17LY79

Additional Model No. : GKIDBTB18, GKIDBTP18

Model Declaration PCB board, structure and internal of these model(s) are the

same, So no additional models were tested

Power Supply : Input: 5V=160mA

Hardware Version : V2.8 Software Version : V3.0

Bluetooth

Frequency Range : 2402MHz ~ 2480MHz

Channel Number : 79 channels for Bluetooth V5.0 (BDR/EDR)

Channel Spacing : 1MHz for Bluetooth V5.0 (BDR/EDR)

Modulation Type : GFSK, $\pi/4$ -DQPSK, 8-DPSK for Bluetooth V5.0 (BDR/EDR)

Bluetooth Version : V5.0

Antenna Description : PCB Antenna, 0dBi(Max)

EIRP (Max. transmitted: 2.92dBm

power)

1.2. Objective

ETSI EN 301 489-1	ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common technical requirements; Harmonised Standard for ElectroMagnetic Compatibility
ETSI EN 301 489-17	ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 17: Specific conditions for Broadband Data Transmission Systems; Harmonised Standard for ElectroMagnetic Compatibility
EN 55032	Electromagnetic compatibility of multimedia equipment — Emission Requirements
EN 55035	Electromagnetic compatibility of multimedia equipment – Immunity requirements

The objective is to determine compliance with ETSI EN 301 489-1 V2.2.3 (2019-11), ETSI EN 301 489-17 V3.2.4 (2020-09), EN 55032:2015/A11:2020 and EN 55035:2017+A11:2020.

1.3. Related Submittal(s)/Grant(s)

No Related Submittals.

1.4. Test Methodology

All measurements contained in this report were conducted with ETSI EN 301 489-1 V2.2.3 (2019-11), ETSI EN 301 489-17 V3.2.4 (2020-09), EN 55032:2015/A11:2020 and EN 55035:2017+A11:2020.

1.5. Description of Test Facility

NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

1.6. Support Equipment List

Manufacturer	Description	Model	Serial Number	Certificate
OPPO	Adapter	OP52KAUH		CE

Note: The adapter is supplied by lab and only use tested.

1.7. External I/O

I/O Port Description	Quantity	Cable
Micro USB Port	1	N/A
MIC Port	1	N/A

1.8. Measurement Uncertainty

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.42dB	
Uncertainty for Radiation Emission test in 3m chamber	3.54dB	Polarize: V
(30MHz to 1GHz)	4.1dB	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber	2.08dB	Polarize: H
(1GHz to 25GHz)	2.56dB	Polarize: V
Uncertainty for radio frequency	0.01ppm	
Uncertainty for conducted RF Power	0.65dB	
Uncertainty for temperature	0.2°C	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

1.9. Description of Test Modes

There was 5 test Modes TM1 to TM5 were shown below:

TM1 : Operate in Bluetooth Mode
 TM2 : Operate in USB Mode
 TM3 Operate in MIC Mode
 TM4 : Operate in Charging Mode

TM5 : Idle Mode

***Note:

1. All test modes were tested, but we only recorded the worst case in this report.

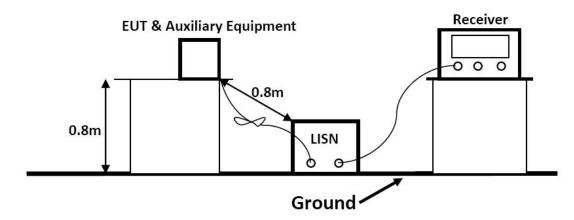
2. SUMMARY OF TEST RESULTS

Rule	Description of Test Items	Result
§7.1	Reference to clause 8.4 of ETSI EN 301 489-1 Conducted Emission (AC mains input/output port)	N/A*
§7.1	Reference to clause 8.3 of ETSI EN 301 489-1 Conducted Emission (DC power input/output port)	N/A*
§7.1	Reference to clause 8.7 of ETSI EN 301 489-1 Conducted Emission (Wired network port)	N/A*
§7.1	Reference to clause 8.2 of ETSI EN 301 489-1 Radiated Emission (Enclosure of ancillary equipment)	Compliant
§7.1	Reference to clause 8.5 of ETSI EN 301 489-1 Harmonic current emissions (AC mains input port)	N/A*
§7.1	Reference to clause 8.6 of ETSI EN 301 489-1 Voltage fluctuations and flicker (AC mains input port)	N/A*
§7.2	Reference to clause 9.3 of ETSI EN 301 489-1 Electrostatic discharge (Enclosure port) (EN 61000-4-2)	Compliant
§7.2	Reference to clause 9.2 of ETSI EN 301 489-1 RF electromagnetic field (80MHz to 6000MHz) (Enclosure port) (EN 61000-4-3)	Compliant
§7.2	Reference to clause 9.4 of ETSI EN 301 489-1 Fast transients common mode (signal, wired network and control ports, DC and AC power ports) (EN 61000-4-4)	N/A*
§7.2	Reference to clause 9.8 of ETSI EN 301 489-1 Surges, line to line and line to ground (AC mains power input ports, wired network ports) (EN 61000-4-5)	N/A*
§7.2	Reference to clause 9.5 of ETSI EN 301 489-1 RF common mode 0.15MHz to 80MHz (signal, wired network and control ports, DC and AC power ports) (EN 61000-4-6)	N/A*
§7.2	Reference to clause 9.6 of ETSI EN 301 489-1 Transients and surges in the vehicular environment (ISO 7637-2)	N/A*
§7.2	Reference to clause 9.7 of ETSI EN 301 489-1 Voltage dips and interruptions (AC mains power input ports) (EN 61000-4-11)	N/A*

3. TEST RESULTS

3.1. Line Conducted Emission

3.1.1 Conducted Emission Limit


Relevant Standard(s): ETSI EN 301 489-1 V2.2.3 (2019-11) / EN 55032:2015/A11:2020 Class B

Limits for Line Conducted Emission				
Frequency	Limit (dBµV)			
(MHz)	Quasi-peak Level	Average Level		
$0.15 \sim 0.50$	66.0 ~ 56.0 *	56.0 ~ 46.0 *		
$0.50 \sim 5.00$	56.0	46.0		
5.00 ~ 30.00	60.0	50.0		

NOTE1-The lower limit shall apply at the transition frequencies.

NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

3.1.2 Test Configuration

The setup of EUT is according with per ETSI EN 301 489-1 measurement procedure. The specification used was with the ETSI EN 301 489-1 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The EUT received charging power from the charger which received power through a LISN supplying power of AC 230V/50Hz.

3.1.3 EMI Test Receiver Setup

During the conducted emission test, the EMI test receiver was set with the following configurations:

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	150KHz ~ 30MHz
(IF)RBW	9kHz

All data was recorded in the Quasi-peak and average detection mode.

3.1.4 Test Procedure

Power on the EUT, the EUT begins to work. Make sure the EUT operates normally during the test.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

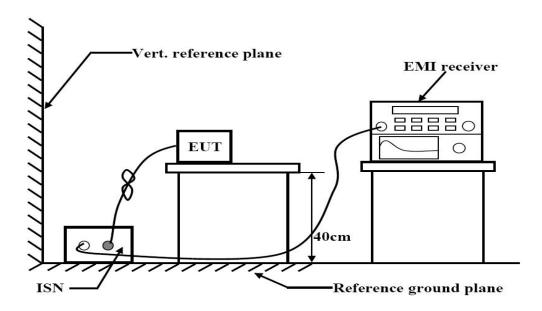
All data was recorded in the Quasi-peak and average detection mode.

3.1.5 Test Results

PASS

Please refer to Appendix A.1 for Emission and Immunity test results.

3.2. Conducted Emission (Wired Network Port)


3.2.1 Conducted Emission Limit(Wired Network Port)

Limits for asymmetric mode conducted emissions					
	Class B voltage limits		Class B current limits		
Frequency	(dBµV)		(dB	μA)	
(MHz)	Quasi-peak	Average	Quasi-peak	Average	
	Level	Level	Level	Level	
$0.15 \sim 0.50$	84.0~74.0	74.0~64.0	40.0~30.0	30.0~20.0	
0.50 ~ 30.00	74.0	64.0	30.0	20.0	

NOTE 1-The limits decrease linearly with the logarithm of the frequency in the range 0,15 MHz to 0,5 MHz.

NOTE 2-The current and voltage disturbance limits are derived for use with an impedance stabilization network (ISN) which presents a common mode (asymmetric mode) impedance of 150Ω to the telecommunication port under test (conversion factor is $20 \log 10 150 / 1 = 44 \text{ dB}$).

3.2.2 Test Configuration

3.2.3 EMI Test Receiver Setup

During the conducted emission test, the EMI test receiver was set with the following configurations:

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	150KHz ~ 30MHz
(IF)RBW	9kHz

All data was recorded in the Quasi-peak and average detection mode.

3.2.4 Test Procedure

Please refer to ETSI EN 301 489-1 Clause 8.7.2 and EN 55032 Clause 6 for the measurement methods.

3.2.5 Test Results

Not applicable.

3.3. Radiated Disturbance

3.3.1 Radiated Emission Limit

Relevant Standard(s): ETSI EN 301 489-1 V2.2.3 (2019-11) / EN 55032:2015/A11:2020 Class B

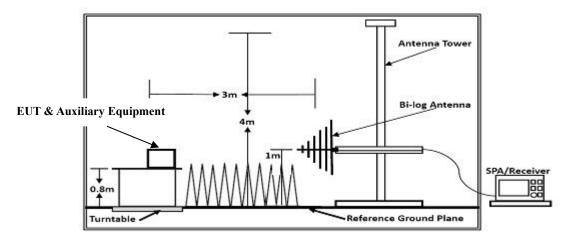
Limits for Radiated Disturbance Below 1GHz						
Frequency (MHz) Facility Distance (Meters) Field Strengths Limit (dBµV/m)						
30 ~ 230	FAR	3	42-35			
230 ~ 1000	FAR	3	42			

^{***}Note:

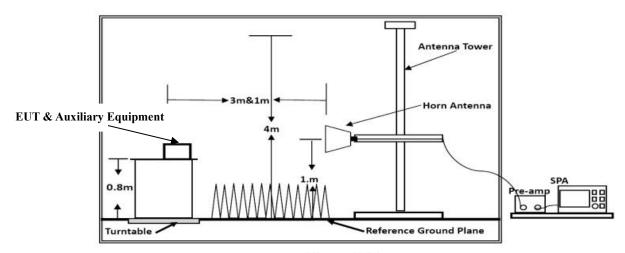
⁽²⁾ Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the EUT.

Limits for Radiated Disturbance Above 1GHz						
Frequency Distance Peak Limit Average Limit						
(MHz)	(Meters)	(dBµV/m)	(dBµV/m)			
1000 ~ 3000	3	70	50			
3000 ~ 6000 3 74 54						
***Note: The lower limi	t applies at the transition f	requency.				

Limits for Radiated Disturbance Below 1GHz (For FM Receivers)					
Frequency	nit (dBμV/m)				
(MHz)	(Meters)	Fundamental	Harmonics		
30 ~ 230	3		52		
230 ~ 300	3	60	52		
300 ~ 1000	3		56		


^{***}Note: These relaxed limits apply only to emissions at the fundamental and harmonic frequencies of the LO.

Signals at all other frequencies shall be compliant with the limits given in above Table.


Limits for Radiated Disturbance Above 1GHz (For FM Receivers)					
1000 ~ 3000	3	70	50		
3000 ~ 6000	3	74	54		
***Note: The lower limit	***Note: The lower limit applies at the transition frequency.				

⁽¹⁾ The smaller limit shall apply at the combination point between two frequency bands.

3.3.2 Test Configuration

Below 1GHz

Above 1GHz

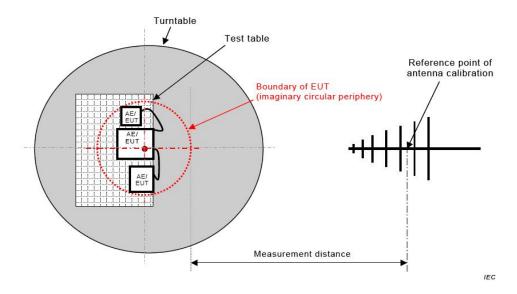


Figure C.1 – Measurement distance

Test Setup for FM Receiver

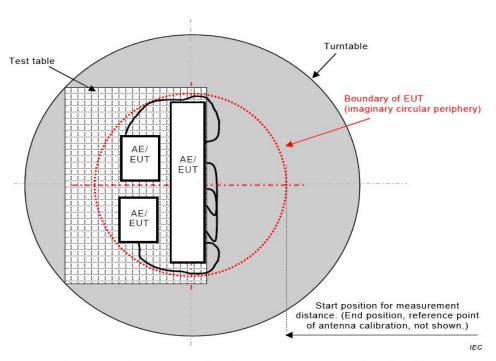
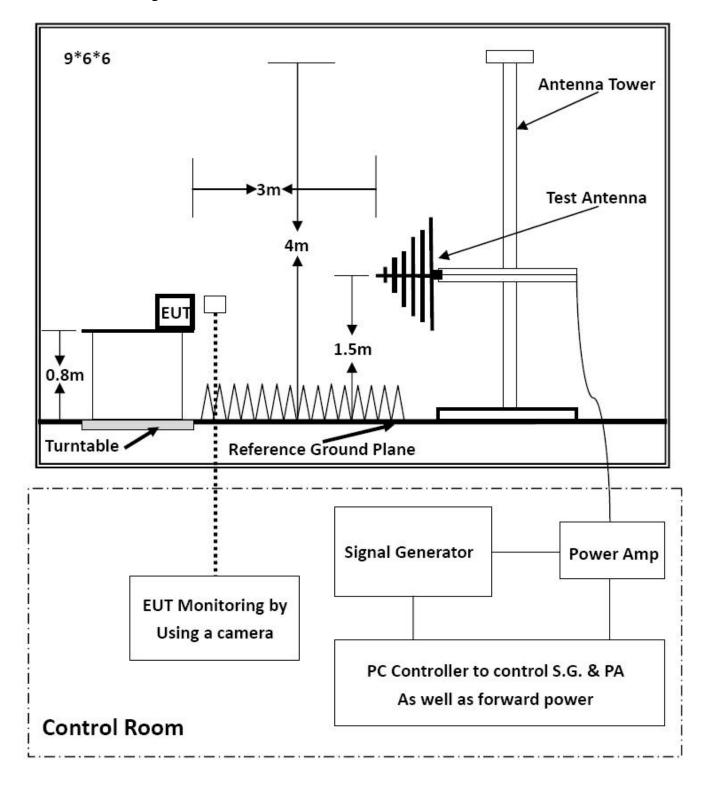


Figure C.2 - Boundary of EUT, Local AE and associated cabling

Test Setup for FM Receiver

3.3.3 Test Procedure

The test method shall be in accordance with CENELEC EN 55032 [1], annex A.3


3.3.4 Test Results

PASS

The worst test mode of the EUT was TM1, and its test data please refer to Appendix A.3 for Emission and Immunity test results.

3.4. RF Electromagnetic Field (80 MHz - 6000 MHz)

3.4.1 Test Configuration

3.4.2 Test Standard

ETSI EN 301 489-1, ETSI EN 301 489-17 (EN 61000-4-3: 2006+A2: 2010)

Test level 2 at 3V/m.

3.4.3 Severity Level

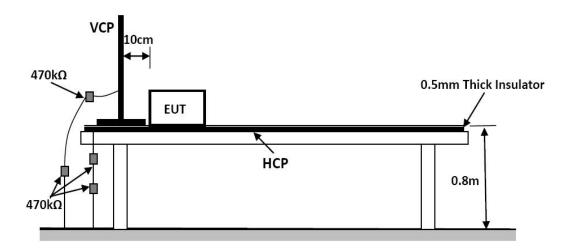
Level	Field Strength (V/m)		
1	1		
2	3		
3	10		
X	Special		
Performance Criterion: A			

3.4.4 Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually. In order to judge the EUT performance, a CCD camera is used to monitor EUT screen. All the scanning conditions are as follows:

Condition of Test	Remark
Fielded Strength	3 V/m (Severity Level 2)
Radiated Signal	Unmodulated
Scanning Frequency	80-6000MHz
Dwell time of radiated	0.0015 decade/s
Waiting Time	3 Sec.

3.4.5 Test Results


PASS

Please refer to Appendix A.4 for Emission and Immunity test results.

3.5. Electrostatic Discharge

3.5.1 Test Configuration

EN 61000-4-2 specifies that a tabletop EUT shall be placed on a non-conducting table which is 80 centimeters above a ground reference plane and that floor mounted equipment shall be placed on a insulating support approximately 10 centimeters above a ground plane. During the tests, the EUT is positioned over a ground reference plane in conformance with this requirement.

For tabletop equipment, a 1.5 by 1.0-meter metal sheet (HCP) is placed on the table and connected to the ground plane via a metal strap with two 470 k Ohms resistors in series. The EUT and attached cables are isolated from this metal sheet by 0.5-millimeter thick insulating material. A Vertical Coupling Plane (VCP) grounded on the ground plane through the same configuration as in the HCP is used.

3.5.2 Test Procedure

ETSI EN 301 489-1 V2.2.3 (2019-11) / EN 61000-4-2: 2009

Test level 3 for Air Discharge at $\pm 8 \text{ kV}$

Test level 2 for Contact Discharge at ±4 kV

3.5.2.1 Air Discharge

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

3.5.2.2 Contact Discharge

All the procedure shall be same as Section 3.5.2.1. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

3.5.2.3 Indirect Discharge For Horizontal Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

3.5.2.4 Indirect Discharge For Vertical Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

3.5.3 Test Results

PASS

Please refer to Appendix A.5 for Emission and Immunity test results.

4. GENERAL PERFORMANCE CRITERIA FOR IMMUNITY TEST

4.1. Performance criteria for Continuous phenomena applied to Transmitter (CT)

For equipment of type II or type III that requires a communication link that is maintained during the test, it shall be verified by appropriate means supplied by the manufacturer that the communication link is maintained during each individual exposure in the test sequence.

Where the EUT is a transmitter, tests shall be repeated with the EUT in standby mode to ensure that any unintentional transmission does not occur.

4.2. Performance criteria for Transient phenomena applied to Transmitter (TT)

For equipment of type II or type III that requires a communication link that is maintained during the test, this shall be verified by appropriate means supplied by the manufacturer during each individual exposure in the test sequence. Where the EUT is a transmitter, tests shall be repeated with the EUT in standby mode to ensure that any unintentional transmission does not occur.

4.3. Performance criteria for Continuous phenomena applied to Receiver (CR)

For equipment of type II or III that requires a communication link that is maintained during the test, it shall be verified by appropriate means supplied by the manufacturer that the communication link is maintained during each individual exposure in the test sequence. Where the EUT is a transceiver, under no circumstances shall the transmitter operate unintentionally during the test.

4.4. Performance criteria for Transient phenomena applied to Receiver (TR)

For equipment of type II or type III that requires a communication link that is maintained during the test, this shall be verified by appropriate means supplied by the manufacturer during each individual exposure in the test sequence. Where the EUT is a transceiver, under no circumstances shall the transmitter operate unintentionally during the test.

Performance criteria for ETSI EN 301 489-17 V3.2.4 (2020-09)

Criteria	During test	After test			
		(i.e. as a result of the application of the test)			
A	Shall operate as intended.	Shall operate as intended.			
	(See note).	Shall be no degradation of performance.			
	Shall be no loss of function.	Shall be no loss of function.			
	Shall be no unintentional transmissions.	Shall be no loss of critical stored data.			
В	May be loss of function.	Functions shall be self-recoverable.			
		Shall operate as intended after recovering.			
		Shall be no loss of critical stored data.			
С	May be loss of function.	Functions shall be recoverable by the operator.			
		Shall operate as intended after recovering.			
		Shall be no loss of critical stored data.			
NOTE: Or	NOTE: Operate as intended during the test allows a level of degradation in accordance with clause 6.2.2.				

5. LIST OF MEASURING EQUIPMENT

RADIATED DISTURBANCE

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	Farad	EZ	/	N/A	N/A
2	3m Full Anechoic Chamber	MRDIANZI	FAC-3M	MR009	2021-09-25	2022-09-24
3	Positioning Controller	MF	MF7082	MF78020803	2021-06-21	2022-06-20
4	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2021-07-25	2024-07-24
5	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2021-07-01	2024-06-30
6	EMI Test Receiver	R&S	ESR3	102312	2021-06-21	2022-06-20
7	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2021-11-16	2022-11-15
8	Broadband Preamplifier	/	BP-01M18G	P190501	2021-06-21	2022-06-20
9	WIDEBAND RADIO COMMUNICATION TESTER	R&S	CMW 500	103818	2021-06-21	2022-06-20

RF ELECTROMAGNETIC FIELD

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	RS Test Software	Tonscend	/	/	N/A	N/A
2	ESG Vector Signal Generator	Agilent	E4438C	MY42081396	2021-11-16	2022-11-15
3	3m Full Anechoic Chamber	MRDIANZI	FAC-3M	MR009	2021-09-25	2022-09-24
4	RF POWER AMPLIFIER	OPHIR	5225R	1052	NCR	NCR
5	RF POWER AMPLIFIER	OPHIR	5273F	1019	NCR	NCR
6	RF POWER AMPLIFIER	SKET	HAP_0306G-5 0W	/	NCR	NCR
7	Stacked Broadband Log Periodic Antenna	SCHWARZBECK	STLP 9128	9128ES-145	NCR	NCR
8	Stacked Mikrowellen LogPer Antenna	SCHWARZBECK	STLP 9149	9149-484	NCR	NCR
9	Electric field probe	Narda S.TS./PMM	EP601	611WX80208	2021-03-25	2022-03-24
10	Sound Level meter	BK Precision	735	7350087310010 020	2021-06-21	2022-06-20
11	Audio Analyzer	R&S	UPV	1146.2003K02- 101721-UW	2021-11-16	2022-11-15
12	Mouse Simulation	Bruel & Kjaer	4227	A0304216	2021-06-21	2022-06-20
13	Ear Simulation and supply	Bruel & Kjaer	2669.4182.593 5	A0305284	2021-06-21	2022-06-20
14	Acoustical Calibrators	Bruel & Kjaer	4231	A0304215	2021-06-21	2022-06-20
15	WIDEBAND RADIO COMMUNICATION TESTER	R&S	CMW 500	103818	2021-06-21	2022-06-20

ELECTROSTATIC DISCHARGE

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	ESD Simulator	SCHLODER	SESD 230	604035	2021-07-20	2022-07-19
2	WIDEBAND RADIO COMMUNICATION TESTER	R&S	CMW 500	103818	2021-06-21	2022-06-20

Note: NCR --- No calibration requirement

6. PHOTOGRAPHS OF TEST SETUP

Please refer to separated files Appendix B for Photographs of Test Setup_EMC

7. PHOTOGRAPHS OF THE EUT

Please refer to separated files Appendix C for Photographs of The EUT.

-----THE END OF REPORT-----