Page 1 of 51

Report No.: UNIA22080915ER-02

RADIO TEST REPORT

Sample: Wireless Headset

Trade Name: N/A

Main Model: X10S

Additional Model: JH-TWS30

Report No.: UNIA22080915ER-02

Prepared for

SHENZHEN JIUHU TECHNOLOGY CO., LTD.

Floor 4, Building E, No.10 HuanGuan South Road, GuanLan JunLong Community, ShenZhen

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang
Community, Xixiang Str, Bao'an District, Shenzhen, China

TEST RESULT CERTIFICATION

Applicant:	SHENZHEN JIUHU TECHNOLOGY CO., LTD.				
Address:	Floor 4, Building E, No.10 HuanGuan South Road, GuanLan JunLong Community, ShenZhen				
Manufacturer	HENZHEN JIUHU TECHNOLOGY CO., LTD.				
Address:	Floor 4, Building E, No.10 HuanGuan South Road, GuanLan JunLong Community,ShenZhen				
Product description					
Product:	Wireless Headset				
Trade Name:	N/A				
Model Name:	X10S, JH-TWS30				
Standard	ETSI EN 300 328 V2.2.2 (2019-07)				
• •	t described above has been tested by Shenzhen United Testing test results show that the EUT is in compliance with the 3.2 requirements.				
	· Aug 00 2022 . Aug 20 2022				
Date of Issue					
Test Result					
	17 ' L)				
Prepared by:	kahn.yang				
opa. ou by.	Kahn Yang/Editor				
	keny chony				
Reviewer:	13 101				
	Kelly Cheng/Supervisor				
Approved & Authorized Sign	Diver l				
Approved & Authorized Signe	Liuze/Manager				
	a_o,a.iagoi				

Report No.: UNIA22080915ER-02 Page 3 of 51

Table of Contents	Page
1 TEST SUMMARY	5
1.1 TEST RESULTS	5
1.2 TEST LOCATION	
1.3 MEASUREMENT UNCERTAINTY	6
1.4 ENVIRONMENTAL CONDITIONS	6
2 GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 CARRIER FREQUENCY OF CHANNELS	
2.3 TEST MODE	9
2.4 DESCRIPTION OF THE TEST MODES	10
2.5 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL	
2.6 MEASUREMENT INSTRUMENTS LIST	11
3 RF OUTPUT POWER	12
3.1 TEST LIMIT	12
3.2 TEST SETUP	
3.3 TEST PROCEDURE	12
3.4 TEST RESULT	13
4 ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION & HOPPI	
4.1 TEST LIMIT	14
4.2 TEST SETUP	16
4.3 TEST PROCEDURE	
4.4 TEST RESULT	16
5 OPPING FREQUENCY SEPARATION	
5.1 TEST LIMIT	18
5.2 TEST SETUP	18
5.3 TEST PROCEDURE	
5.4 TEST RESULT	19
6 ADAPTIVE (CHANNEL ACCESS MECHANISM)	20
6.1 TEST LIMIT	20
6.2 TEST SETUP	20
6.3 TEST PROCEDURE	
6.4 TEST RESULT	21

Table of Contents

Page

7 OCCUPIED CHANNEL BANDWIDTH	
7.1 TEST LIMIT	22
7.2 TEST SETUP	22
7.3 TEST PROCEDURE	22
7.4 TEST RESULT	23
8 TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND D	OOMAIN24
8.1 TEST LIMIT	24
8.2 TEST SETUP	24
8.3 TEST PROCEDURE	25
8.4 TEST RESULT	25
9 SPURIOUS EMISSIONS – TRANSMITTER	
9.1 TEST LIMIT	26
9.2 TEST SETUP	26
9.3 TEST PROCEDURE	
9.4 TEST RESULT	29
10 SPURIOUS EMISSIONS – RECEIVER	
10.1 TEST LIMIT	34
10.2 TEST PROCEDURE	34
10.3 TEST SETUP	35
10.4 TEST RESULT	37
11 RECEIVER BLOCKING	41
11.1 TEST LIMIT	41
11.2 TEST SETUP	
11.3 TEST PROCEDURE	
11.4 TEST RESULT	
42 DUOTO OF FUT	

Page 5 of 51

Report No.: UNIA22080915ER-02

1 TEST SUMMARY

1.1 TEST RESULTS

Test procedures according to the technical standards:

ETSI EN 300 328 V2.2.2 (2019-07): Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz band; Harmonised Standard for access to radio spectrum

TRANSM	IITTER PARAMETER	S	
Standard	Limit	Frequency Range (MHz)	Applicable (Yes/No)
RF output power	Clause 4.3.1.2.3	() .	Υ
Duty Cycle, Tx-sequence, Tx-gap	Clause 4.3.1.3.3		N
Accumulated Transmit time, Frequency Occupation & Hopping Sequence	Clause 4.3.1.4.3	0400 0400 5	Υ
Hopping Frequency Separation	Clause 4.3.1.5.3	2400-2483.5	Υ
Medium Utilisation (MU) factor	Clause 4.3.1.6.3	1-	N
Adaptivity (Adaptive FHSS)	Clause 4.3.1.7		N
Occupied Channel Bandwidth	Clause 4.3.1.8.3	a.	Υ
Transmitter unwanted emissions in the OOB domain	Clause 4.3.1.9.3	FL=2400-2BW FH=2483.5+2BW	Y
Transmitter unwanted emissions in the spurious domain(Conducted)	Clause 4 2 4 40 2	20.42750	Υ
Transmitter unwanted emissions in the spurious domain(Radiated)	Clause 4.3.1.10.3	30-12750	Υ
RECEI	VER PARAMETERS	8	
Spurious emissions (Conducted)	Clause 4 2 4 44 2	20.42750	Y
Spurious emissions (Radiated)	Clause 4.3.1.11.3	30-12750	Y
Receiver Blocking	Clause 4.3.1.12.4	2400-2483.5	Υ
Geo-location capability	Clause 4.3.1.13.3	7	N

Note: Owing to the maximum declared RF Output power (e.i.r.p.) less than 10 dBm, so the item Clause 4.3.1.3.3, Clause 4.3.1.6.3, Clause 4.3.1.7 are not applicable.

1.2 TEST LOCATION

Test Laboratory : Shenzhen United Testing Technology Co., Ltd.

Address : 2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd,

Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

Page 6 of 51

1.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Report No.: UNIA22080915ER-02

No.		Item	Uncertainly
1		Uncertainty of Radio Frequency	Uc=±1 x 10 ⁻⁷
2		RF output power, conducted	0.42 dB
3	1	Adjacent Channel Power, conducted	0.88 dB
4	1	Unwanted Emissions, conducted	2.76 dB
5		All emissions, radiated	5.20 dB
6		Uncertainty of Temperature	Uc = 0.5° C
7		Uncertainty of Humidity	Uc = ±1 %
8		Uncertainty of DC and low frequency voltages	Uc = ±2 %

1.4 ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35 °C	
Relative Humidity:	30~60 %	. 17
Air Pressure:	86-106 kPa	

Page 7 of 51

Report No.: UNIA22080915ER-02

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

The following information of EUT submitted and identified by applicant:

Product:	Wireless Headset					
Trade Name:	N/A					
Main Model:	X10S					
Additional Model:	JH-TWS30					
Model Difference:	All model's the function, software and electric circuit are the same, only with a product color and model named different. Test sample model: X10S.					
Frequency Range:	BT: 2402~2480MHz					
Number of Channels:	79CH					
Modulation Type:	BR: ⊠GFSK EDR: ⊠π /4-DQPSK, ⊠8DPSK					
Bluetooth Version:	V5.1					
Antenna designation:	Internal Antenna					
Antenna Gain:	3.0dBi					
Power supply:	DC 5V by adapter DC 3.7V by battery					
Product Description:	The EUT is a Wireless Headset. Based on the application, features, or specification exhibited in User's Manual, more details of EUT technical specification, please refer to the User's Manual.					

2.2 CARRIER FREQUENCY OF CHANNELS

			Chani	nel Lists			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	21	2423	42	2444	63	2465
01	2403	22	2424	43	2445	64	2466
02	2404	23	2425	44	2446	65	2467
03	2405	24	2426	45	2447	66	2468
04	2406	25	2427	46	2448	67	2469
05	2407	26	2428	47	2449	68	2470
06	2408	27	2429	48	2450	69	2471
07	2409	28	2430	49	2451	70	2472
08	2410	29	2431	50	2452	71	2473
09	2411	30	2432	51	2453	72	2474
10	2412	31	2433	52	2454	73	2475
11	2413	32	2434	53	2455	74	2476
12	2414	33	2435	54	2456	75	2477
13	2415	34	2436	55	2457	76	2478
14	2416	35	2437	56	2458	77	2479
15	2417	36	2438	57	2459	78	2480
16	2418	37	2439	58	2460	/	/
17	2419	38	2440	59	2461	/	1
18	2420	39	2441	60	2462	/	
19	2421	40	2442	61	2463	/	/
20	2422	41	2443	62	2464	1	/

2.3 TEST MODE

Test Mode	Description			
BR_TX_2402_1Mbps	Bluetooth BR Transmitting mode (Channel: 2402, Rate: 1Mbps)			
BR_TX_2480_1Mbps	Bluetooth BR Transmitting mode (Channel: 2480, Rate: 1Mbps)			
EDR_TX_2402_2Mbps	Bluetooth EDR Transmitting mode (Channel: 2402, Rate: 2Mbps)			
EDR_TX_2480_2Mbps	Bluetooth EDR Transmitting mode (Channel: 2480, Rate: 2Mbps)			
EDR_TX_2402_3Mbps	Bluetooth EDR Transmitting mode (Channel: 2402, Rate: 3Mbps)			
EDR_TX_2480_3Mbps	Bluetooth EDR Transmitting mode (Channel: 2480, Rate: 3Mbps)			
BR_HOP_NA_1Mbps	Bluetooth BR Hopping mode (Rate: 1Mbps)			
EDR_HOP_NA_2Mbps	Bluetooth EDR Hopping mode (Rate: 2Mbps)			
EDR_HOP_NA_3Mbps	Bluetooth EDR Hopping mode (Rate: 3Mbps)			
BR_RX_2402_1Mbps	Bluetooth BR Receiving mode (Channel: 2402, Rate: 1Mbps)			
BR_RX_2480_1Mbps	Bluetooth BR Receiving mode (Channel: 2480, Rate: 1Mbps)			
EDR_RX_2402_2Mbps	Bluetooth EDR Receiving mode (Channel: 2402, Rate: 2Mbps)			
EDR_RX_2480_2Mbps	Bluetooth EDR Receiving mode (Channel: 2480, Rate: 2Mbps)			
EDR_RX_2402_3Mbps	Bluetooth EDR Receiving mode (Channel: 2402, Rate: 3Mbps)			
EDR_RX_2480_3Mbps	Bluetooth EDR Receiving mode (Channel: 2480, Rate: 3Mbps)			
Notes				

Note:

All modes have been tested and the worst mode test data recording in the test report, if no any other data.

Page 10 of 51 Report No.: UNIA22080915ER-02

2.4 DESCRIPTION OF THE TEST MODES

		100
Test Condition	st Condition Temperature(°C)	
NT/NV	24	50
LT/NV	-10	1
HT/NV	55	/

Note:

- 1. The HT 55°C and LT -10°C was declared by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.
- 2. NV: Normal Voltage; NT: Normal Temperature.
- 3. LT: Low Extreme Test Temperature; HT: High Extreme Test Temperature.
- 4. The measurements are performed at the highest, middle, lowest available channels.

2.5 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests

Item	Equipment	Mfr/Brand	Model/Type No.	Power Cable Length	Note
E-1	Wireless Headset	N/A	X10S	50cm	EUT
E-2	Adapter	Xiaomi			AE
E-3	Phone	HUAWEI	12		AE

Note:

- 1. The support equipment was authorized by Declaration of Confirmation.
- 2. All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

2.6 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	Horn Antenna	Sunol	DRH-118	A101415	2023.09.27
2	Broadband Hybrid Antenna	Sunol	JB1	A090215	2024.02.26
3	PREAMP	HP	8449B	3008A00160	2022.09.22
4	PREAMP	HP	8447D	2944A07999	2023.05.17
5	EMI Test Receiver	Rohde&Schwarz	ESR3	101891	2022.09.22
6	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2022.09.22
7	MXA Signal Analyzer	Agilent	N9020A	MY51110104	2022.09.22
8	RF Power Sensor	DARE	RPR3006W	15I00041SNO88	2023.05.17
9	RF Power Sensor	DARE	RPR3006W	15I00041SNO89	2023.05.17
10	RF Power Divider	Anritsu	K241B	992289	2022.09.22
11	Signal Generator	Agilent	E4421B	MY4335105	2022.09.22
12	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2022.09.22
13	Wideband Radio Communication Tester	Rohde&Schwarz	CMW500	154987	2022.09.22
14	Active Loop Antenna	Com-Power	AL-130R	10160009	2023.07.25
15	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2023.05.23
16	Horn Antenna	A-INFOMW	LB-180400-KF	J211060660	2022.09.27
17	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2023.05.28
18	Signal Generator	Agilent	N5183A	MY47420153	2023.05.28
19	Spctrum Analyzer	Rohde&Schwarz	FSP 40	100501	2023.05.28
20	Power Meter	KEYSIGHT	N1911A	MY50520168	2023.05.28
21	Frequency Meter	VICTOR	VC2000	997406086	2023.05.28
22	DC Power Source	HYELEC	HY5020E	055161818	2023.06.23
	•				

Page 12 of 51 Report No.: UNIA22080915ER-02

3 RF OUTPUT POWER

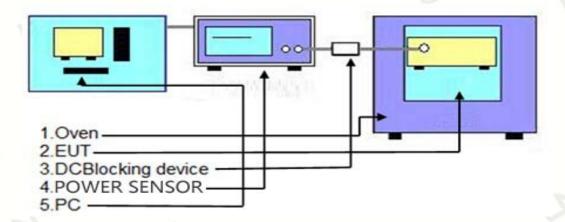
3.1 TEST LIMIT

FHSS:

The maximum RF output power for adaptive Frequency Hopping equipment shall be equal to or less than 20dBm. The maximum RF output power for non-adaptive Frequency Hopping equipment shall be declared by the manufacturer. See clause 5.4.1 m). The maximum RF output power for this equipment shall be equal to or less than the value declared by the manufacturer. This declared value shall be equal to or less than 20dBm. Other than FHSS:

For adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be 20dBm. The maximum RF output power for non-adaptive equipment shall be declared by the supplier and shall not exceed 20dBm. See clause 5.4.1 m). For non-adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be equal to or less than the value declared by the supplier.

This limit shall apply for any combination of power level and intended antenna assembly.


Limit	
20 dBm	

Between the start and stop times of each individual burst calculate the RMS power over the burst using the formula below. Save these P_{burst} values, as well as the start and stop times for each burst.

$$P_{burst} = \frac{1}{k} \sum_{n=1}^{k} P_{sample}(n)$$

with 'k' being the total number of samples and 'n' the actual sample number

3.2 TEST SETUP

3.3 TEST PROCEDURE

- 1.Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.2.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.2.2 for the measurement method.
 - a. Use a fast power sensor suitable for 2,4 GHz and capable of 1 MS/s. Use the following settings:
 - Sample speed 1 MS/s or faster.
 - The samples must represent the power of the signal.
 - Measurement duration: For non-adaptive equipment: equal to the observation period defined in b)
 - b. Clause 4.3.1.3.2 or clause 4.3.2.4.2. For adaptive equipment, the measurement duration shall be long enough to ensure a minimum number of bursts (at least 10) is captured
 - c. Print the plots from power sensor by used power sensor on PC, select the max result and record it.

3.4 TEST RESULT

Modulation		GFSK		
Test conditions		NITNI\/	Extreme	
rest co	nations	NTNV	LTNV	HTNV
EIRP (dBm)	Hopping	2.35	2.28	2.31
	Max. E.I.R.P	2.35		
Limits			20dBm	17
Burst plot		> 10		
Result		PASS		

Modulation		π/4 DQPSK		
Test conditions		NITAD /	Extreme	
rest co	nalions	-1.87	LTNV	HTNV
CIDD (dDm)	Hopping	Hopping -1.87	-1.95	-1.93
EIRP (UBIII)	EIRP (dBm) Max. E.I.R.P	- 3	-1.87	
Lir	Limits		20dBm (-10dBW)	
Burs	t plot	> 10		
Re	Result		PASS	

Modulation			8DPSK	
Test conditions		NITNI)/	Extreme	
rest co	nations	NTNV	LTNV	HTNV
CIDD (dDm)	m) Hopping -0.91 Max. E.I.R.P	-0.91	-0.98	-0.96
EIRP (dBm)		i.	-0.91	
Limits		20dBm (-10dBW)		
Burst plot		> 10		
Re	sult	PASS		

Note: Average EIRP Power = Burst power + the antenna gain value

4 ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION & HOPPING SEQUENCE

4.1 TEST LIMIT

ACCUMULATED TRANSMIT TIME		
CONDITION		
☐Non-adaptive frequency hopping systems	≤ 15 ms	
⊠Adaptive frequency hopping systems	≤ 400 ms	

FREQUENCY OCCUPATION			
CONDITION LIMIT (OPTION 1)			
	Each hopping frequency of the hopping sequence shall be occupied at least once within a period not exceeding four		
	times the product of the dwell time and the number of hopping frequencies in use.		

HOPPING SEQUENCE(S)			
CONDITION	LIMIT		
☐Non-adaptive frequency hopping systems	≥5 hopping frequencies or 5/minimum Hopping Frequency Separation in MHz, whichever is the greater.		
MAdaptive fraguency happing systems	Operating frequency band ≥58.45MHz (Operating over a minimum of 70 % of the operating in the band 2,4 GHz to 2,4835 GHz)		
Adaptive frequency hopping systems	≥15 hopping frequencies or 15/minimum Hopping Frequency Separation in MHz, whichever is the greater.		

Non-adaptive frequency hopping systems

The Accumulated Transmit Time on any hopping frequency shall not be greater than 15 ms within any observation period of 15 ms multiplied by the minimum number of hopping frequencies (N) that have to be used.

Non-adaptive medical devices requiring reverse compatibility with other medical devices placed on the market that are compliant with version 2.0.2 or earlier versions of ETSI EN 300 328, are allowed to have an operating mode in which the maximum Accumulated Transmit Time is 400 ms within any observation period of 400 ms multiplied by the minimum number of hopping frequencies (N) that have to be used, only when communicating to these legacy devices already placed on the market. In order for the equipment to comply with the Frequency Occupation requirement, it shall meet either of the following two options:

Option 1: Each hopping frequency of the hopping sequence shall be occupied at least once within a period not exceeding four times the product of the dwell time and the number of hopping frequencies in use.

Option 2: The occupation probability for each frequency shall be between ($(1 / U) \times 25 \%$) and 77 % where U is the number of hopping frequencies in use.

Page 15 of 51

Report No.: UNIA22080915ER-02

The hopping sequence(s) shall contain at least N hopping frequencies where N is 15 or 15 divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater.

Adaptive frequency hopping equipment

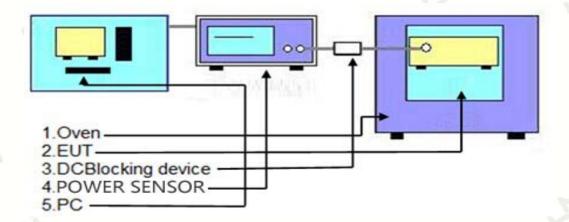
Adaptive Frequency Hopping equipment shall be capable of operating over a minimum of 70 % of the band specified in clause 1.

The Accumulated Transmit Time on any hopping frequency shall not be greater than 400 ms within any observation period of 400 ms multiplied by the minimum number of hopping frequencies (N) that have to be used. In order for the equipment to comply with the Frequency Occupation requirement, it shall meet either of the following two options:

Option 1: Each hopping frequency of the hopping sequence shall be occupied at least once within a period not exceeding four times the product of the dwell time and the number of hopping frequencies in use.

Option 2: The occupation probability for each frequency shall be between ($(1 / U) \times 25 \%$) and 77 % where U is the number of hopping frequencies in use.

The hopping sequence(s) shall contain at least N hopping frequencies at all times, where N is 15 or 15 divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater.


Other Requirements

For non-Adaptive Frequency Hopping equipment, from the N hopping frequencies defined in clause 4.3.1.4.3.1 above, the equipment shall transmit on at least one hopping frequency while other hopping frequencies are blacklisted. For equipment that blacklists one or more hopping frequencies, these blacklisted frequencies are considered as active transmitting for the calculation of the MU factor of the equipment. See also clause 5.4.2.2.1.3 step 4, second bullet itemand clause 5.4.2.2.1.4 step 3, note 2.For Adaptive Frequency Hopping equipment, from the N hopping frequencies defined in clause 4.3.1.4.3.2 above, the equipment shall consider at least one hopping frequency for its transmissions. Providing that there is no interferencepresent on this frequency with a level above the detection threshold defined in clause 4.3.1.7.2.2 point 5 or clause 4.3.1.7.3.2 point 5, then the equipment shall have transmissions on this frequency. For non-Adaptive Frequency Hopping equipment, when not transmitting on a hopping frequency, the equipment has to occupy that frequency for the duration of the typical dwell time (see also definition for blacklisted frequency in clause 3.1).

For Adaptive Frequency Hopping equipment using LBT based DAA, if a signal is detected during the CCA, the equipment may jump immediately to the next frequency in the hopping sequence (see clause 4.3.1.7.2.2 point 2) provided the limit for maximum dwell is respected.

4.2 TEST SETUP

4.3 TEST PROCEDURE

- 1.Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.4.1 for the test conditions.
- 2.Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.4.2 for the measurement method.
 - a. Set EUT work in hopping mode
 - b. Centre Frequency: Equal to the hopping frequency being investigated
 - c. Frequency Span: 0 Hz
 - d. RBW: ~ 50 % of the Occupied Channel Bandwidth (380KHz for 1M, 591KHz for 3M)
 - e. VBW: ≥ RBW (380KHz for 1M,591KHz for 3M)
 - f. Detector Mode: RMS
 - g. Sweep time: Equal to the applicable observation period (see clause 4.3.1.4.3.1 or clause 4.3.1.4.3.2)
 - h. Number of sweep points: 30000
 - j. Race mode: Clear / Write
 - k. Trigger: Free Run

4.4 TEST RESULT

GFSK Mode:

Data Packet	Frequency	Pulse Duration	Accumulated Transmit Time	Limits
	(MHz)	(ms)	(ms)	(ms)
DH5	2402	2.880	287	400
DH5	2480	2.880	287	400

Minimum Frequency Occupation Time Result:

Data Packet	Frequency	Minimum Frequency occupation Time(ms)	Limit
	(MHz)	occupation fille(ills)	(pcs)
DH5	2402	4.352	≥1
DH5	2480	5.821	≥1

Note: Observation period:4×Accumulated Transmit Time × Actual number of hopping frequencies in use

20dB BW(MHz)	Limit		
79.68			
Hopping Sequence(%)	Hanning Seguence > 700/	Honning Channel 15	
95.36%	Hopping Sequence >70%	Hopping Channel>15	

Remark:

- 1. For adaptive systems, using the lowest and highest -20 dB points from the total spectrum envelope, it shall be verified whether the system uses 70 % of the band specified.
- 2. Hopping Sequence(%) = (20dB BW/83.5)*100

8DPSK Mode:

Data Packet	Frequency	Pulse Duration	Accumulated Transmit Time	Limits
	(MHz)	(ms)	(ms)	(ms)
3DH5	2402	2.890	308	400
3DH5	2480	2.890	308	400

Minimum Frequency Occupation Time Result:

	Frequency	Minimum Frequency	Limeit
Data Packet	(MHz)	occupation Time(ms)	Limit (pcs)
3DH5	2402	4.176	≥1
3DH5	2480	5.539	≥1

Note: Observation period:4×Accumulated Transmit Time x Actual number of hopping frequencies in use

20dB BW(MHz)	Limit		
79.59	Limit		
Hopping Sequence(%)	Hanning Coguence > 700/	Honning Channel, 15	
95.37%	Hopping Sequence >70%	Hopping Channel>15	

Remark:

- 1. For adaptive systems, using the lowest and highest -20 dB points from the total spectrum envelope, it shall be verified whether the system uses 70 % of the band specified.
- 2. Hopping Sequence(%) = (20dB BW/83.5)*100

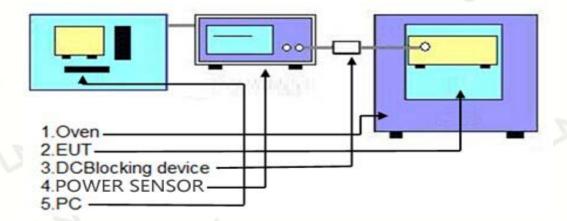
Page 18 of 51

Report No.: UNIA22080915ER-02

5 OPPING FREQUENCY SEPARATION

5.1 TEST LIMIT

Non-adaptive frequency hopping systems


For non-adaptive Frequency Hopping equipment, the Hopping Frequency Separation shall be equal to or greater than the Occupied Channel Bandwidth (see clause 4.3.1.8), with a minimum separation of 100 kHz. For equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for non-adaptive Frequency Hopping equipment operating in a mode where the RF Output power is less than 10 dBm e.i.r.p. only the minimum Hopping Frequency Separation of 100 kHz applies.

Adaptive frequency hopping systems

For adaptive Frequency Hopping equipment, the minimum Hopping Frequency Separation shall be 100 kHz. Adaptive Frequency Hopping equipment that switched to a non-adaptive mode for one or more hopping frequencies because interference was detected on these hopping frequencies with a level above the threshold level defined in clause 4.3.1.7.2.2, point 5 or clause 4.3.1.7.3.2, point 5, is allowed to continue to operate with a minimum Hopping Frequency Separation of 100 kHz as long as the interference remains present on these hopping frequencies. The equipment shall continue to operate in an adaptive mode on other hopping frequencies.

Adaptive Frequency Hopping equipment which decided to operate in a non-adaptive mode on one or more hopping frequencies without the presence of interference, shall comply with the limit in clause 4.3.1.5.3.1 for these hopping frequencies as well as with all other requirements applicable to non-adaptive frequency hopping equipment.

5.2 TEST SETUP

Page 19 of 51

5.3 TEST PROCEDURE

- 1.Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.5.1 for the test conditions.
- 2.Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.5.2 for the measurement method.
 - Centre Frequency: Centre of the two adjacent hopping frequencies
 - Frequency Span: Sufficient to see the complete power envelope of both hopping frequencies
 - RBW: 1 % of the Span

- RBW: 30KHz VBW:100KHz

Detector Mode: RMSTrace Mode: Max HoldSweep time: 1S

5.4 TEST RESULT

Mode	Channel	Frequency (MHz)	Ch. Separation(KHz)	Limit(KHz)	Result
	00	2402	1007	0	PASS
GFSK	39	2441	1007		PASS
	78	2480	1007	i.e.	PASS
	00	2402	1005	17	PASS
π/4 DQPSK	39	2441	1005	>100	PASS
	78	2480	1005		PASS
1	00	2402	1006		PASS
8DPSK	39	2441	1006	4.	PASS
	78	2480	1006	127	PASS

Page 20 of 51

Report No.: UNIA22080915ER-02

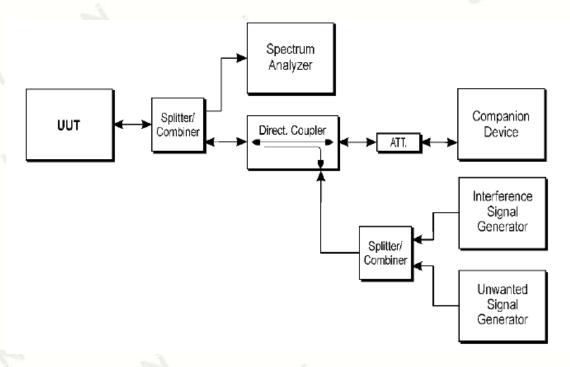
6 ADAPTIVE (CHANNEL ACCESS MECHANISM)

6.1 TEST LIMIT

The frequency range of the equipment is determined by the lowest and highest.

Adaptive Frequency Hopping using LBT based DAA:

- 1. COT ≤60ms;
- 3. Idle Period = 5% of COT;
- 4. Detection threshold level = -70 dBm/MHz + (20 dBm Pout e.i.r.p.)/1 MHz (Pout in dBm).


Adaptive Frequency Hopping using other forms of DAA (non-LBT based):

- 1. The frequency shall remain unavailable for a minimum time equal to 1 second or 5 times the actual number of hopping frequencies in the current (adapted) channel map used by the equipment;
- 2. COT ≤ 40ms;
- 3. Idle Period = 5% of COT:
- 4. Detection threshold level = -70 dBm/MHz + (20 dBm Pout e.i.r.p.)/1 MHz (Pout in dBm).

Short Control Signalling Transmissions:

Short Control Signalling Transmissions shall have a maximum duty cycle TxOn / (TxOn + TxOff) ratio of 10 % within any observation period of 50 ms.

6.2 TEST SETUP

Note:

- 1. BT is normal transmission.
- 2. Interference shall be injected ->BT shall stop transmission.
- 3. Blocking shall be injected ->BT does not resume any normal transmission.
- 4. Removing the interference and blocking signal.

Page 21 of 51

6.3 TEST PROCEDURE

- 1. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.6.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.6.2 for the measurement method.
- 3. The spectrum analyzer sweep was triggered by the start of the interfering signal, with theinterfering signal present, a 100 % duty cycle CW signal is inserted as the blocking signal.

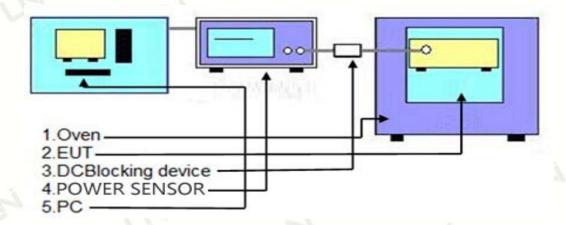
Report No.: UNIA22080915ER-02

- RBW: ≥ Occupied Channel Bandwidth (if the analyzer does not support this setting, thehighest available setting shall be used)
- RBW: use next available RBW setting below the measured Occupied Channel Bandwidth
- Filter type: Channel Filter
- RBW:1MHz/VBW:3MHz
- Detector Mode: RMS
- Centre Frequency: Equal to the hopping frequency to be tested.
- Span: 0 Hz
- Sweep time: > Channel Occupancy Time of the UUT. If the Channel Occupancy Time isnon-contiguous (non-LBT based equipment), the sweep time shall be sufficient to cover the period over which the Channel Occupancy Time is spread out
- Trace Mode: Clear/WriteTrigger Mode: Video

6.4 TEST RESULT

The power is less than 10dBm, so not applicable.

Page 22 of 51


7 OCCUPIED CHANNEL BANDWIDTH

7.1 TEST LIMIT

The Occupied Channel Bandwidth shall all completely within the band given in the table of Page 6. For non-adaptive Frequency Hopping equipment with e.i.r.p. greater than 10 dBm, the Occupied Channel Bandwidth for every occupied hopping frequency shall be equal to or less than the Nominal Channel Bandwidth declared by the manufacturer. See clause 5.4.1 j). This declared value shall not be greater than 5 MHz.

Report No.: UNIA22080915ER-02

7.2 TEST SETUP

7.3 TEST PROCEDURE

- 1. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.7.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.7.2 for the measurement method.
 - Centre Frequency: The centre frequency of the channel under test
 - Resolution BW: ~ 1 % of the span without going below 1 %
 - -RBW: 30KHz VBW: 100KHz
 - -Frequency Span for frequency hopping equipment: Lowest frequency separation that is used within the hopping sequence)
 - -Frequency Span for other types of equipment: 2 x Nominal Channel Bandwidth (e.g. 2 MHz for a 1 MHz channel)
 - -Detector Mode: RMS -Trace Mode: Max Hold
 - -Sweep time:1S

7.4 TEST RESULT

					23	
Mode	Channel	Frequency (MHz)	Occupied Bandwidth (MHz)	FL/FH(MHz)	Limit	Result
CECK	00	2402	0.776	2401.617	[7]	PASS
GFSK	78	2480	0.755	2480.388		PASS
π/4	00	2402	1.248	2401.375	FL > 2400 MHz and	PASS
DQPSK	78	2480	1.246	2480.626	FH < 2483.5 MHz	PASS
8DPSK	00	2402	1.189	2401.402		PASS
ODPSK	78	2480	1.154	2480.587	4	PASS

Note: FL is the lowest frequency of the 99% occupied bandwidth of power envelope. FH is the highest frequency of the 99% occupied bandwidth of power envelope.

Page 24 of 51 Report No.: UNIA22080915ER-02

8 TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

8.1 TEST LIMIT

Clause	Frequency	Limit
M	2400-BW~2400 2483.5~2483.5+BW	-10dBm/MHz
4.3.1.9.3	2400-2BW~2400-BW 2483.5+BW~2483.5+2BW	-20dBm/MHz
12.	<2400-2BW >2483.5+2BW	-30dBm/MHz

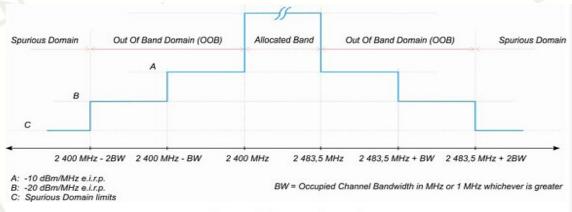
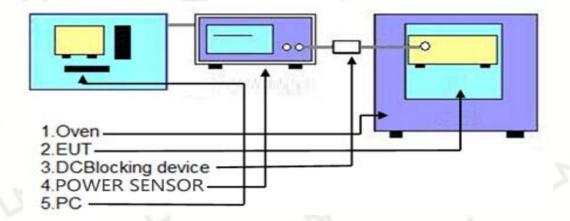



Figure 1: Transmit mask

8.2 TEST SETUP

Page 25 of 51

8.3 TEST PROCEDURE

- 1. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.8.1 for the test conditions.
- 2.Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.8.2 for the measurement method.

For systems using FHSS modulation, the measurements shall be performed during normal operation (hopping).

Report No.: UNIA22080915ER-02

Connect the UUT to the spectrum analyzer and use the following settings:

- Centre Frequency: 2 484 MHz

- Span: 0 Hz

Resolution BW: 1 MHzFilter mode: Channel filterVideo BW: 3 MHzDetector Mode: RMS

Detector Mode: RMSTrace Mode: Max HoldSweep Mode: Continuous

- Sweep Points: Sweep Time [s] / (1 µs) or 5 000 whichever is greater

- Trigger Mode: Video trigger; in case video triggering is not possible, an external trigger source may be

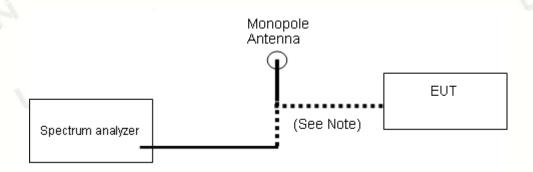
used

- Sweep Time: > 120 % of the duration of the longest burst detected during the measurement of the RF Output Power

8.4 TEST RESULT

		2402	2MHz	2480MHz		
		OOB EN	MISSION	OOB EMISSION		
Test Condition	Test Mode	Segment A	Segment B	Segment A	Segment B	
		Maximum power	Maximum power	Maximum power	Maximum power	
		dBm/MHz	dBm/MHz	dBm/MHz	dBm/MHz	
	GFSK	-61.12	-63.97	-62.28	-62.36	
Nom (24°C) Nom (3.7V)	π/4DQPSK	-49.59	-61.16	-63.77	-63.83	
(611.1)	8DPSK	-52.46	-62.55	-63.75	-63.94	
Limit	Limit (dBm)		-20.00	-20.00	-10.00	
Result		PASS	PASS	PASS	PASS	

Page 26 of 51

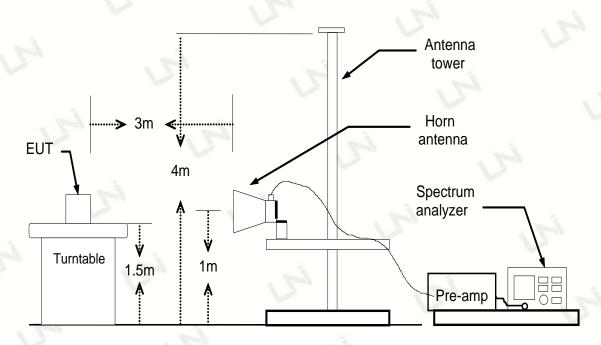

9 SPURIOUS EMISSIONS - TRANSMITTER

9.1 TEST LIMIT

	Maximum power,	
Frequency range	e.r.p(≤1 GHz)	Bandwidth
	e.i.r.p(> 1 GHz)	
30 MHz to 47 MHz	-36 dBm	100 KHz
47 MHz to 74 MHz	-54 dBm	100 KHz
74 MHz to 87.5 MHz	-36 dBm	100 KHz
87.5 MHz to 118 MHz	-54 dBm	100 KHz
118 MHz to 174 MHz	-36 dBm	100 KHz
174 MHz to 230 MHz	-54 dBm	100 KHz
230 MHz to 470 MHz	-36 dBm	100 KHz
470 MHz to 862 MHz	-54 dBm	100 KHz
862 MHz to 1 GHz	-36 dBm	100 KHz
1 GHz to 12.75 GHz	-30 dBm	1 MHz

9.2 TEST SETUP

Conducted Method:



Radiated Method:

Above 1GHz

9.3 TEST PROCEDURE

- 1.Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.9.1 for the test conditions.
- 2.Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.9.2 for the measurement method.

Spectrum Analyzer	Se	etting
Frequency Start to Stop	30 MHz to 1000 MHz	1000 MHz to 12750MHz
Resolution bandwidth	100 kHz	1 MHz
Video bandwidth	300 kHz	3 MHz
Filter type	3 dB (Gaussian)	
Detector mode	Peak	-i
Trace Mode	Max Hold	J. 1
Sweep Points	≥ 19 400 (Set as 20000)	≥ 23 500 (Set as 24000)
Sweep Time		ufficiently long, Below 1GHz such cy step, Above 1GHz such that the measurement time is

- a. The EUT was placed on the top of the turntable in Semi Anechoic Room.
- b. The test shall be made in the transmitting mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. This measurement shall be repeated with the transmitter in standby mode where applicable.
- d. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable.
- e. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- f. Replace the EUT by standard antenna and feed the RF port by signal generator.
- g. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- h. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- i. The level of the spurious emission is the power level of (8) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- j. If the level calculated in (9) is higher than limit by more than 6dB, then lower the RBW of the spectrum analyzer to 30KHz. If the level of this emission does not change by more than 2dB, then it is taken as narrowband emission, otherwise, wideband emission.
- k. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.
- I. EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand.

3.EUT OPERATION DURING TEST

- a. The EUT was programmed to be in continuously transmitting mode.
- b. For the initial investigation on the highest, lowest frequency, no significant differences in spurious emissions were observed between these 2 channels. The worst test data was shown
- c. There is a filter used during the test, the fundamental signals will be not shown in the plot.
- d. The EUT is connected with the GSM base station when the BT is transmiting.

Page 29 of 51

Report No.: UNIA22080915ER-02

4.EUT CONDUCTED TEST

1) The emissions over the range 30 MHz to 1 000 MHz shall be identified.

2)Spectrum analyzer settings: Resolution bandwidth: 100 kHz Video bandwidth: 300 kHz Detector mode: Peak

Sweep Points: ≥19 400 Trace Mode: Max Hold

- 3)Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using RMS detector and compared to the limits
- 4) The emissions over the range 1 GHz to 12,75 GHz shall be identified.

5) Resolution bandwidth: 1 MHz

Video bandwidth: 3 MHz Detector mode: Peak Trace Mode: Max Hold Sweep Points: ≥23 500

6) Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using RMS detector and compared to the limits.

9.4 TEST RESULT

Pass

Conducted Method:

Test Data of Transmitter Spurious Emissions											
Test Mode	Detector	Frequency [MHz]	Level [dBm]	Limit [dBm]	Verdict						
DD 2402 4Mbm	Peak	800.651	-49.72	-36.00	Pass						
BR_2402_1Mbps	Peak	3202.823	-41.59	-30.00	Pass						
DD 2490 4Mbps	Peak	826.437	-49.43	-36.00	Pass						
BR_2480_1Mbps	Peak	3306.984	-43.28	-30.00	Pass						

Page 30 of 51

Radiated Method:

(Worst Case: Low channel)

Transmitter Spurious Emission below 1GHz (30MHz-1GHz)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarization	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
97.34	32.43	V	-61.88	0.04	1.60	-60.32	-54.00	6.32
158.15	27.17	V	-66.22	0.06	1.00	-65.28	-36.00	29.28
353.45	30.74	V	-68.98	0.25	5.89	-63.34	-36.00	27.34
424.69	27.03	V	-73.71	0.33	7.02	-67.02	-36.00	31.02
630.49	29.98	V	-69.40	0.52	7.30	-62.62	-54.00	8.62
755.24	27.21	V	-71.94	0.61	6.35	-66.20	-36.00	30.20
Other (30-1000)	À	V					-36.00/- 54.00	
		D.		15	N	1	1	
87.65	31.23	Н	-63.16	0.04	0.98	-62.22	-36.00	26.22
153.66	27.76	Н	-66.77	0.06	0.70	-66.13	-36.00	30.13
352.33	29.43	Н	-68.76	0.25	5.76	-63.25	-36.00	27.25
432.93	26.74	Н	-72.60	0.34	6.76	-66.18	-36.00	30.18
632.77	28.85	Н	-72.05	0.52	7.26	-65.30	-54.00	11.30
726.89	28.64	Н	-69.72	0.59	6.60	-63.70	-36.00	27.70
Other (30-1000)		H		in,		ä	-36.00/- 54.00	

Transmitter Spurious Emission above 1GHz (1GHz-12.75GHz)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarization	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
4804	51.86	V	-47.16	1.25	7.11	-41.30	-30.00	11.30
7206	49.23	V	-50.35	1.57	7.96	-43.96	-30.00	13.96
		V		\	2-3	7	à	
ri	3	V						\
	77.	V	1 2-1		£			
Other(1000- 12750)		V			17.		-30.00	
D		ben		Ĺ		W.		
4804	51.29	Н	-48.47	1.25	7.06	-42.65	-30.00	12.65
7206	49.44	Н	-49.99	1.93	8.34	-43.59	-30.00	13.59
\		H		4.00				
		Н				17.		-22
	121	Н	-1-		5.			
Other(1000- 12750)		Н			12,	\	-30.00	

Note:1.The margins of the other spectrum are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "--" remark, if no specific emission from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

(Worst Case: High channel)

Transmitter Spurious Emission below 1GHz (30MHz-1GHz)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarization	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
98.64	32.32	V	-62.52	0.04	1.50	-61.06	-54.00	7.06
155.76	28.87	V	-64.42	0.06	0.70	-63.78	-36.00	27.78
356.99	30.08	V	-69.77	0.25	6.28	-63.75	-36.00	27.75
427.02	26.98	V	-73.19	0.33	6.96	-66.57	-36.00	30.57
626.86	28.78	V	-71.93	0.51	7.14	-65.31	-54.00	11.31
759.19	27.46	V	-70.68	0.61	6.55	-64.74	-36.00	28.74
Other (30-1000)		V	1	2,-	\	<u>ri-</u>	-36.00/- 54.00	-1
	4				3			7
87.65	30.75	H Z-J	-63.22	0.04	0.98	-62.28	-36.00	26.28
155.09	27.18	Н	-66.56	0.06	0.70	-65.92	-36.00	29.92
348.04	29.54	Н	-68.02	0.24	5.54	-62.73	-36.00	26.73
432.73	26.38	Н	-73.67	0.34	6.76	-67.25	-36.00	31.25
629.20	28.61	Н	-71.34	0.51	7.26	-64.60	-54.00	10.60
731.67	27.41	H	-72.17	0.59	6.76	-66.00	-36.00	30.00
Other (30-1000)		Н			-72		-36.00/- 54.00	h

Transmitter Spurious Emission above 1GHz (1GHz-12.75GHz)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarization	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
4960	51.78	V	-46.40	1.25	7.11	-40.54	-30.00	10.54
7440	49.13	V	-50.37	1.57	7.96	-43.97	-30.00	13.97
	V	V	5-	1	3			
A		V				\		«
J	-12	V		\	%			
Other(1000- 12750)		V			120		-30.00	
5		i Fil		-1				
4960	51.61	Н	-47.87	1.25	7.11	-42.01	-30.00	12.01
7440	49.63	Н	-50.54	1.93	8.34	-44.13	-30.00	14.13
\		H/ J		- 6		4		
		Н				1-7-		7.7
	19	Н	line.					
Other(1000- 12750)	-	Н	2	1	<u> </u>	- \	-30.00	

Note:1. The margins of the other spectrum are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "--" remark, if no specific emission from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 34 of 51 Report No.: UNIA22080915ER-02

10 SPURIOUS EMISSIONS - RECEIVER

10.1 TEST LIMIT

Clause	Test Item	Frequency(MHz)	Limit
4.3.2.10.3	Spurious emissions (radiated)	30-1000	-57dBm
		1000-12750	-47dBm

10.2 TEST PROCEDURE

- 1. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.10.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.10.2 for the measurement method. The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting		
Frequency Start to Stop	30 MHz to 1000 MHz	1000 MHz to 12750MHz	
Resolution bandwidth	100 kHz	1 MHz	
Video bandwidth	300 kHz	3 MHz	
Filter type	3 dB (Gaussian)		
Detector mode	Peak		
Trace Mode	Max Hold		
Sweep Points	≥ 19 400 (Set as 20000)	≥ 23 500 (Set as 24000)	
Sweep Time	For non continuous transmissions (duty cycle less than 100 %), the sweep time shall be sufficiently long, Below 1GHz such that for each 100 kHz frequency step, Above 1GHz such that for each 1MHz frequency step the measurement time is greater than two transmissions of the UUT, on any channel		

- a. The EUT was placed on the top of the turntable in Semi Anechoic Room.
- b. The test shall be made in the receiving mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. For 30~12750MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable.
- d. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- e. Replace the EUT by standard antenna and feed the RF port by signal generator.
- f. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- g. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- h. The level of the spurious emission is the power level of (7) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- i. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.
- j. EUT Orthogonal Axis:
- "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand.
- k. EUT was programmed to be in continuously receiving mode.

Page 35 of 51

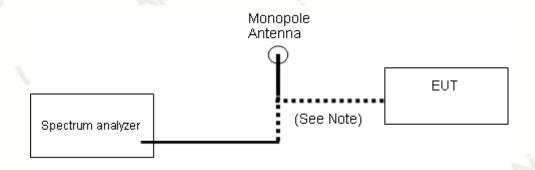
3.EUT CONDUCTED TEST

1)The emissions over the range 30 MHz to 1 000 MHz shall be identified.

2) Spectrum analyzer settings:

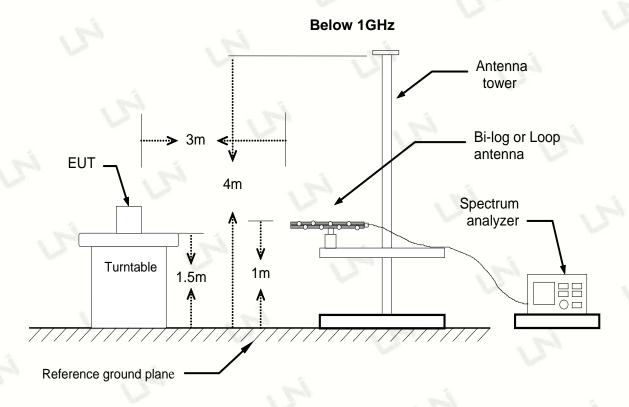
Resolution bandwidth: 100 kHz Video bandwidth: 300 kHz Detector mode: Peak

Sweep Points: ≥19 400 Trace Mode: Max Hold

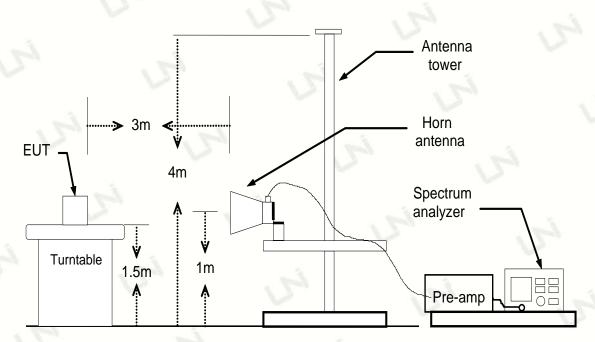

- 3)Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using RMS detector and compared to the limits given in 5.7.1.
- 4) The emissions over the range 1 GHz to 12.75 GHz shall be identified.

5) Resolution bandwidth: 1 MHz Video bandwidth: 3 MHz Detector mode: Peak Trace Mode: Max Hold Sweep Points: ≥23200

6) Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using RMS detector and compared to the limits given in 5.7.1.


10.3 TEST SETUP

Conducted Method:



Radiated Method:

Above 1GHz

Pass

Conducted Method:

oondacted Method.										
Test Data of Receiver Spurious Emissions										
Test Mode Detector Frequency [MHz] Level [dBm] Limit [dBm										
DV 0400	Peak	911.463	-78.82	-57.00	Pass					
RX_2402	Peak	12185.567	-64.55	-47.00	Pass					
RX_2480	Peak	897.632	-78.58	-57.00	Pass					
	Peak	5784.781	-64.67	-47.00	Pass					

Report No.: UNIA22080915ER-02

Radiated Method:

(Worst Case: Low channel)

Receiver Spurious Emission below 1GHz (30MHz-1GHz)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarization	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
94.07	27.06	V	-67.96	0.04	1.72	-66.28	-57.00	9.28
160.76	28.13	V	-67.00	0.06	1.20	-65.86	-57.00	8.86
355.80	28.96	V	-69.86	0.25	6.15	-63.96	-57.00	6.96
535.11	26.96	V	-72.16	0.45	6.90	-65.71	-57.00	8.71
676.43	31.49	V	-66.94	0.55	6.56	-60.93	-57.00	3.93
834.93	29.39	V	-68.76	0.66	6.58	-62.84	-57.00	5.84
Other (30-1000)		V		12,		13.j	-57.00	ig,
	17.		1					
137.65	28.53	н 💜	-64.81	0.05	0.00	-64.86	-57.00	7.86
160.94	29.01	Н	-65.10	0.06	1.20	-63.96	-57.00	6.96
340.57	29.49	Н	-68.26	0.23	5.70	-62.79	-57.00	5.79
540.55	28.76	Н	-71.33	0.45	7.20	-64.58	-57.00	7.58
676.62	29.91	ЭН	-70.06	0.55	6.56	-64.05	-57.00	7.05
827.57	27.97	Н	-70.42	0.66	6.45	-64.63	-57.00	7.63
Other (30-1000)	<u>.</u>	Н					-57.00	7.

Receiver Spurious Emission above 1GHz (1GHz-12.75GHz)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarization	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
1792.02	32.50	V	-65.07	1.09	5.88	-60.29	-47.00	13.29
	ted .	V						72
	V	V		1	3			
- A	,	V		~		\		(
Z	-12	V	1		&			
Other(1000- 12750)		V	Ď		120		-47.00	
U"		ieg ,		- 1				
1680.34	31.75	Н	-65.40	1.09	5.88	-60.62	-47.00	13.62
,	A	Н					1	- ·
\		н 🗸		- rd				
		Н				FL		7.7
	67.	Н	£.					
Other(1000- 12750)		Н			$\mathcal{N}_{\overline{I}}$	\	-47.00	

Note:1.The margins of the other spectrum are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "--" remark, if no specific emission from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

(Worst Case: High channel)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarization	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
94.07	27.03	V	-68.84	0.04	1.72	-67.16	-57.00	10.16
158.50	29.30	V	-65.25	0.06	1.00	-64.31	-57.00	7.31
355.28	28.10	V	-71.23	0.25	6.15	-65.33	-57.00	8.33
531.43	26.32	V	-73.59	0.44	6.66	-67.37	-57.00	10.37
677.73	30.51	V	-68.90	0.55	6.52	-62.93	-57.00	5.93
830.76	30.18	V	-68.03	0.66	6.30	-62.39	-57.00	5.39
Other (30-1000)		V		124		-i	-57.00	<u></u>
	6					2	1	24
137.65	27.89	H pul	-65.58	0.05	0.00	-65.63	-57.00	8.63
163.62	29.26	H	-64.39	0.06	1.44	-63.01	-57.00	6.01
344.60	30.88	Н	-67.05	0.24	5.62	-61.67	-57.00	4.67
539.82	27.52	Н	-72.17	0.45	7.14	-65.48	-57.00	8.48
675.12	28.82	Н	-70.50	0.55	6.60	-64.45	-57.00	7.45
830.85	28.44	<i>В</i> н	-69.65	0.66	6.30	-64.01	-57.00	7.01
Other (30-1000)	`	Н	_/		-12		-57.00	7

Receiver Spurious Emission above 1GHz (1GHz-12.75GHz)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarization	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
1795.08	31.48	V	-66.22	1.08	5.83	-61.47	-47.00	14.47
	, poli	V						12
	V	V		1	3			
- A		V				()	59.	«
J	-12	V	3		%			
Other(1000- 12750)		V	<u> </u>		120		-47.00	
U"		leg ,		-1				
1677.40	31.47	Н	-66.66	1.08	5.83	-61.91	-47.00	14.91
	A	Н			"		\	- L
\		н		- Fd		%		
		Н				FL		7.7
	L_{T} ,	Н	<u>.</u>					
Other(1000- 12750)		Н		1	77	- \	-47.00	

Note:1.The margins of the other spectrum are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "--" remark, if no specific emission from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 41 of 51

11 RECEIVER BLOCKING

11.1 TEST LIMIT

While maintaining the minimum performance criteria as defined in clause 4.3.2.11.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table A, table B or table C.

Report No.: UNIA22080915ER-02

Receiver Category 1:

Table A: Receiver Blocking parameters for Receiver Category 1 equipment

Wanted signal mean power from companion device (dBm)	Blocking signal frequency	Blocking signal power (dBm)	Type of blocking
(see notes 1 and 4)	(MHz)	(see note 4)	signal
(-133 dBm + 10 × log10(OCBW)) or -68	2 380	7	
dBmwhichever is less(see note 2)	2 504		4
- 4	2 300		12
in, "U	2 330	-34	CW
(-139 dBm + 10 × log10(OCBW)) or -74	2 360	-54	OVV
dBmwhichever is less(see note 3)	2 524		
120	2 584		\
i 19.	2 674	17	and a

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wantedsignal from the companion device cannot be determined, a relative test may be performedusing a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signalrequired to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in theabsence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wantedsignal from the companion device cannot be determined, a relative test may be performedusing a wanted signal up to Pmin + 20 dB where Pmin is the minimum level of wanted signalrequired to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in theabsence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antennaassembly gain. In case of conducted measurements, this level has to be corrected for the(in-band) antenna assembly gain (G). In case of radiated measurements, this level isequivalent to a power flux density (PFD) in front of the UUT antenna with the UUT beingconfigured/positioned as recorded in clause 5.4.3.2.2.

Report No.: UNIA22080915ER-02

Table B: Receiver Blocking parameters for Receiver Category 2 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	cking signal requency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(120 dDm + 10 + log10(OCDM) + 10 dD)	2 380		
(-139 dBm + 10 x log10(OCBW) + 10 dB) or (-74 dBm + 10 dB) whichever is less	2 504	-34	CW
	2 300	-54	CVV
(see note 2)	2 584	i.	

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wantedsignal from the companion device cannot be determined, a relative test may be performedusing a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signalrequired to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in theabsence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antennaassembly gain. In case of conducted measurements, this level has to be corrected for the(in-band) antenna assembly gain (G). In case of radiated measurements, this level isequivalent to a power flux density (PFD) in front of the UUT antenna with the UUT beingconfigured/positioned as recorded in clause 5.4.3.2.2.

Receiver Category 3:

Table C: Receiver Blocking parameters for Receiver Category 3 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(-139 dBm + 10 × log10(OCBW) + 20 dB) or (-74 dBm + 20 dB) whichever is less (see note 2)	2 380 2 504 2 300 2 584	-34	CW

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wantedsignal from the companion device cannot be determined, a relative test may be performedusing a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signalrequired to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in theabsence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antennaassembly gain. In case of conducted measurements, this level has to be corrected for the(in-band) antenna assembly gain (G). In case of radiated measurements, this level isequivalent to a power flux density (PFD) in front of the UUT antenna with the UUT beingconfigured/positioned as recorded in clause 5.4.3.2.2.

Variable attenuator Performance step size ≤ 1 dB Monitoring Device Signalling Unit Companion Device Direct. Coupler Splitter/ UUT Combiner Blocking Signal Source Spectrum Analyzer

Optional

11.3 TEST PROCEDURE

The simplified conducted measure procedures are as follows:

- 1)he UUT shall be set to hopping mode.
- 2)The blocking signal generator is set to the first frequency as defined in the appropriate table corresponding to the receiver category and type of equipment.
- 3)With the blocking signal generator switched off, a communication link is established between the UUT and the associated companion device using the test setup. The level of the wanted signal shall be set to the value provided in the table corresponding to the receiver category and type of equipment. This level may be measured directly at the output of the companion device and a correction is made for the coupling loss into the UUT. The actual level for the wanted signal shall be recorded in the test report.
- 4) The blocking signal at the UUT is set to the level provided in the table corresponding to the receiver category and type of equipment. It shall be verified and recorded in the test report that the performance criteria is met.
- 5) Repeat step 4 for each remaining combination of frequency and level for the blocking signal as provided in the table corresponding to the receiver category and type of equipment.

11.4 TEST RESULT

Remark: The power is more than 0dBm, less than 10dBm, belong to category 2.

Test Condition	Blocking Signal Frequency(MHz)	Blocking Signal Power(dBm)	Wanted signal mean power from companion device(dBm)	Performance PER	Limit PER	Result
1	2 300	-31.00	-67.10	1.24%	10%	
GFSK	2 380	-31.00	-67.10	0.87%	10%	D
Hopping Mode	2 504	-31.00	-67.22	2.76%	10%	Pass
	2 584	-31.00	-67.22	1.58%	10%	

Test Condition	Blocking Signal Frequency(MHz)	Blocking Signal Power(dBm)	Wanted signal mean power from companion device(dBm)	Performance PER	Limit PER	Result
	2 300	-31.00	-65.04	1.15%	10%	
π /4-DQPSK	2 380	-31.00	-65.04	1.24%	10%	212
Hopping Mode	2 504	-31.00	-65.04	2.71%	10%	Pass
	2 584	-31.00	-65.04	1.98%	10%	

Test Condition	Blocking Signal Frequency(MHz)	Blocking Signal Power(dBm)	Wanted signal mean power from companion device(dBm)	Performance PER	Limit PER	Result
	2 300	-31.00	-65.25	1.53%	10%	in.
8-DPSK	2 380	-31.00	-65.25	1.21%	10%	D
Hopping Mode	2 504	-31.00	-65.38	2.95%	10%	Pass
i.	2 584	-31.00	-65.38	1.56%	10%	1

Note: The levels of the blocking signal and wanted signal have to be corrected for the (in-band) antenna assembly gain.

Page 45 of 51

PHOTO 01

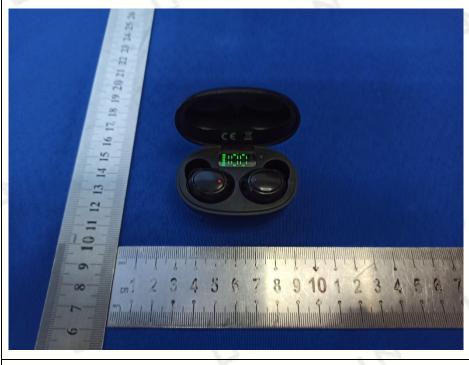


PHOTO 02

Page 46 of 51

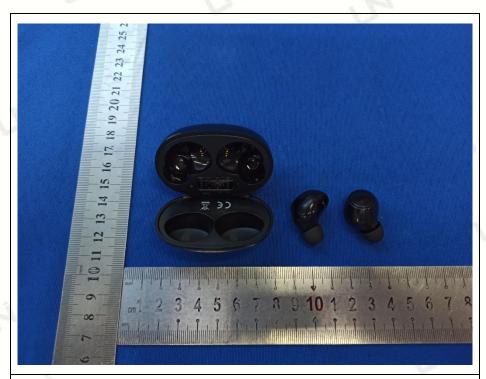


PHOTO 03

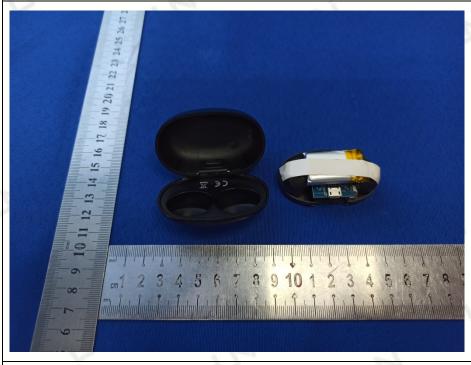


PHOTO 04

Page 47 of 51

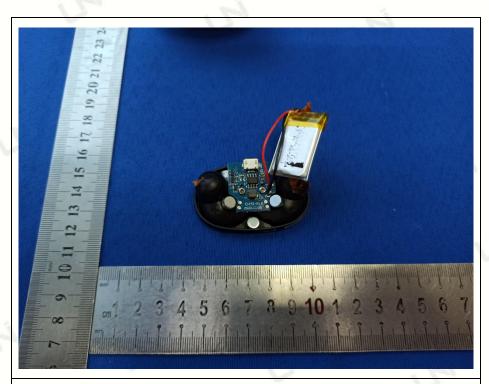
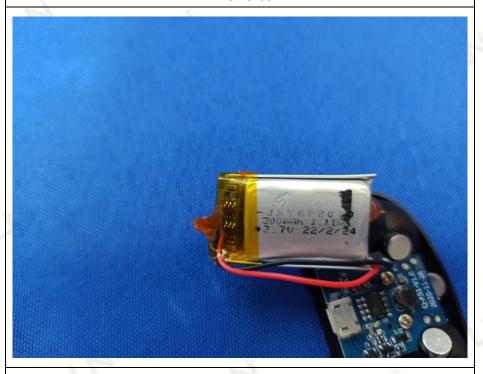



PHOTO 05

PHOTO 06

Page 48 of 51

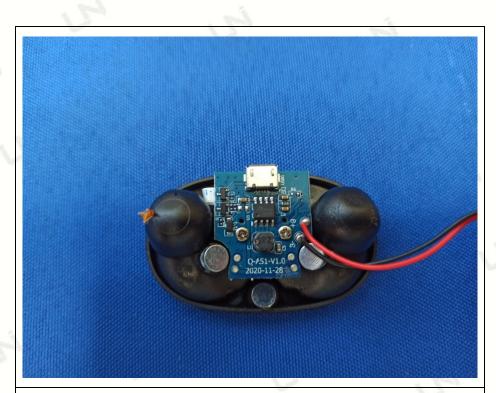
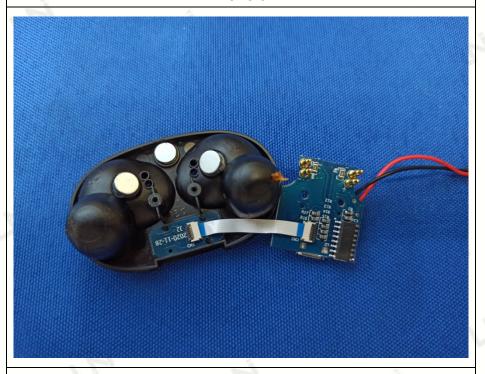



PHOTO 07

PHOTO 08

Page 49 of 51 Report No.: UNIA22080915ER-02

PHOTO 09

PHOTO 10

Page 50 of 51 Report No.: UNIA22080915ER-02

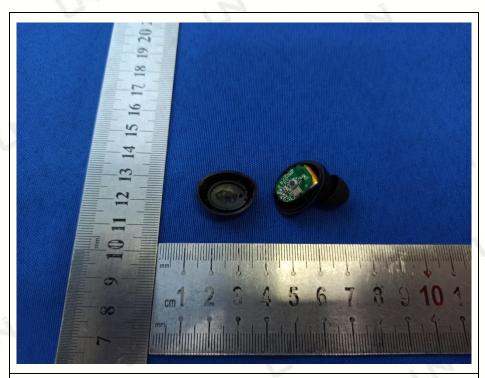


PHOTO 11

End of Report

Page 51 of 51

Statement

- 1. This report must have the signature of the authorized signatory and the special seal of the report, otherwise it will be considered invalid. If there is no anti-counterfeiting electronic seal of the laboratory in the report in PDF format or it is displayed as "x", the report is invalid.
- 2. This report shall not be modified, added or deleted without authorization.
- 3. The results of this report are only valid for the EUT provided by Applicant to our laboratory for inspection (That is, EUT received by our laboratory. Without special explanation, it refers to the samples presented in the report "PHOTO OF EUT").
- 4.If there is any objection to the test data and conclusions of this report, please submit it in writing within 10 working days after the date of issuance of the report.
- 5. Without the written consent of the laboratory, this report shall not be copied (except for full copy), nor shall it be used as publicity materials or advertising.
- 6. The cover of the report is for decoration only, not included in the body of the report.
- 7. The paper report issued by our laboratory has the same effect as the electronic report. In case of any difference between the two, the electronic report shall prevail.
- 8. The Chinese and English reports issued by our laboratory have the same effect. In case of any difference in understanding, the Chinese version shall prevail.
- 9. Please provide the complete report documents issued by our laboratory when inquiring the report.
- 10. For cases where compliance is determined based on test values, when relevant specifications, standards, documents, and customers have no relevant requirements and no other special instructions, the test report issued by this laboratory is carried out in full value and adopts ILAC-G8:09 /2019 "Simple Acceptance Rule" for judgment.
- 11.In the People's Republic of China, when there is no CMA Accredited Symbol in this report, the report is only for scientific research, teaching or internal quality control activities.