Page 1 of 53 Report No.: UNIA22080915ER-01

EMC TEST REPORT

Sample: Wireless Headset

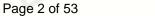
Trade Name: N/A

Main Model: X10S

Additional Model: JH-TWS30

Report No.: UNIA22080915ER-01

Prepared for


SHENZHEN JIUHU TECHNOLOGY CO., LTD.

Floor 4, Building E, No.10 HuanGuan South Road, GuanLan JunLong Community, ShenZhen

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

TEST RESULTCERTIFICATION

Report No.: UNIA22080915ER-01

Applicant:	SHENZHEN JIUHU TECHNOLOGY CO., LTD.
Address:	Floor 4, Building E, No.10 HuanGuan South Road, GuanLan JunLong Community, ShenZhen
Manufacturer:	SHENZHEN JIUHU TECHNOLOGY CO., LTD.
Address:	Floor 4, Building E, No.10 HuanGuan South Road, GuanLan JunLong Community, ShenZhen
Product description	
Product:	Wireless Headset
Trade Name:	N/A
Model Name:	X10S, JH-TWS30
Standards:	ETSI EN 301 489-1 V2.2.3 (2019-11) ETSI EN 301 489-17 V3.2.4 (2020-09)
2014/53/EU RE Directive Art.3 Date of Test	test results show that the EUT is in compliance with the 3.2 requirements.
Date (s) of performance of tests.	: Aug. 09, 2022 ~ Aug. 20, 2022
Date of Issue	: Oct. 10, 2022
Test Result	: Pass
Prepared by:	kahn.yang
i in	Kahn Yang/Editor
Reviewer:	Kolly Chang/Constraint
	Kelly Cheng/Supervisor
Approved & Authorized Signe	er:

Liuze/Manager

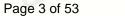
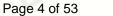



Table of Contents Page

1 TEST SUMMARY	6
1.1 TEST RESULTS	6
1.2 TEST LOCATION	
1.3 MEASUREMENT UNCERTAINTY	7
1.4 ENVIRONMENTAL CONDITIONS	7
2 GENERAL INFORMATION	
2.1 GENERAL DESCRIPTION OF EUT	8
2.2 DESCRIPTION OF THE TEST MODES	9
2.3 DESCRIPTION OF TEST SETUP	9
2.4 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL	9
2.5 MEASUREMENT INSTRUMENTS LIST	10
3 CONDUCTED EMISSIONS MEASUREMENT	12
3.1 CONDUCTED EMISSION LIMIT	12
3.2 TEST SETUP	
3.3 TEST PROCEDURE	
3.4 TEST RESULT	13
4 RADIATED EMISSIONSMEASUREMENT	16
4.1 RADIATION EMISSION LIMIT	16
4.2 TEST SETUP	16
4.3 TEST PROCEDURE	17
4.4 TEST RESULT	17
5 HARMONICS CURRENT	22
5.1 HARMONICS CURRENT LIMIT	
5.2 TEST SETUP	23
5.3 TEST PROCEDURE	23
5.4 TEST RESULT	
6 VOLTAGE FLUCTUATION AND FLICKERS	24
6.1 VOLTAGE FLUCTUATION AND FLICKERS LIMIT	24
6.2 TEST SETUP	24
6.3 TEST PROCEDURE	24
6.4 TEST RESULT	25

Table of Contents

Page

7 EMC IMMUNITY TEST	26
7.1 DESCRIPTION OF PERFORMANCE CRITERIA	26
7.2 GENERAL PERFORMANCE CRITERIA	26
7.3 PERFORMANCE TABLE	27
8 ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD)	28
8.1 TEST SPECIFICATION	
8.2 TEST SETUP	28
8.3 TEST PROCEDURE	29
8.4 TEST RESULT	30
9 RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNITY TEST (RS).	31
9.1 TEST SPECIFICATION	31
9.2 TEST SETUP	31
9.3 TEST PROCEDURE	32
9.4 TEST RESULT	32
10 ELECTRICAL FAST TRANSIENT IMMUNITY TEST (EFT)	33
10.1 TEST SPECIFICATION	33
10.2 TEST SETUP	33
10.3 TEST PROCEDURE	35
10.4 TEST RESULT	
11 SURGE IMMUNITY TEST (SURGE)	36
11.1 TEST SPECIFICATION	36
11.2 TEST SETUP	36
11.3 TEST PROCEDURE	37
11.4 TEST RESULT	37
12 CONDUCTED RADIO FREQUENCY DISTURBANCES IMMUNITY TEST (CS)	38
12.1 TEST SPECIFICATION	
12.2 TEST SETUP	38
12.3 TEST PROCEDURE	39
12.4 TEST RESULT	39
13 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST (PFMF)	40
13.1 TEST SPECIFICATION	40
13.2 TEST SETUP	

	Table of Contents	Page
13.3 TEST PR	ROCEDURE	41
13.4 TEST RE	ESULT	41
14 VOLTAGE IN	NTERRUPTION/DIPS IMMUNITY TEST (DIPS)	42
	PECIFICATION	
14.2 TEST SE	ETUP	42
14.3 TEST PR	ROCEDURE	43
14.4 TEST RE	ESULT	43
15 PHOTO OF E	EUT	44
16 PHOTO OF 1	TEST (A)	50

1 TEST SUMMARY

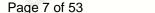
1.1 TEST RESULTS

Test procedures according to the technical standards:

ETSI EN 301 489-1 V2.2.3 (2019-11)

ETSI EN 301 489-17 V3.2.4 (2020-09)

	EMC Emission			
Standard	Test Item	Class	Result	Remark
5	Conducted Emission On AC Mains Power Ports 150kHz to 30MHz	Class B	PASS	
EN 55032:2015+A11:2020	Conducted Emission On Telecom Port 150kHz to 30MHz	Class B	N/A	7/2
00002.201017111.2020	Radiated Emission 30MHz to 1000MHz	Class B	PASS	
	Radiated Emission 1GHz to 6GHz	Class B	PASS	NOTE (1)
EN IEC 61000-3-2:2019 +A1:2021	Harmonic Current Emission	-	N/A	NOTE (2)
EN 61000-3-3:2013 +A2:2021+AC:2022-01	Voltage Fluctuations & Flicker	12	PASS	UN
	EMC Immunity			
Section EN 55035:2017+A11:2020	Test Item	Performance Criteria	Result	Remark
EN 61000-4-2:2009	Electrostatic Discharge	В	PASS	
EN IEC 61000-4-3:2020	RF Electromagnetic Field	А	PASS	
EN 61000-4-4:2012	Fast Transients	В	PASS	
EN 61000-4-5:2014 +A1:2017	Surges	В	PASS	ش
EN 61000-4-6:2014 +AC:2015	Injected Current	Α	PASS	
EN 61000-4-8:2010	Power Frequency Magnetic Field	Α	PASS	77
EN IEC 61000-4-11:2020 +AC:2020-06	Volt. Interruptions Volt. Dips	B/C/C	PASS	NOTE (3


Note:

If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times of the highest frequency or 6 GHz, whichever is less.

⁽¹⁾ If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz.

If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz.

If the highest frequency of the internal sources of the EUT is between 500 MHz and 1GHz, the measurement shall only be made up to 5 GHz.

(2) The power consumption of EUT is less than 75W and no Limits apply.

(3) Voltage Dip: 100% reduction – Performance Criteria B
Voltage Dip: 30% reduction – Performance Criteria C
Voltage Interruption: 100% Interruption – Performance Criteria C

- (4) For client's request and manual description, the test will not be executed.
- (5) "N/A" denotes test is not applicable in this Test Report.
- (6) "--" means "no" in this test report.

1.2 TEST LOCATION

Test Laboratory : Shenzhen United Testing Technology Co., Ltd.

Address : 2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd,

Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

Report No.: UNIA22080915ER-01

1.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k = 2, providing a level of confidence of approximately 95%.

A. Conducted Measurement:

100	Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
LINI CICDO		CICDD 46 4 2	9kHz ~ 150kHz	2.96	
UNI	CISPR 16-4-2	150kHz ~ 30MHz	2.44		

B. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
		9kHz ~ 30MHz	2.50	
UNI	CISPR 16-4-2	30MHz ~ 1000MHz	4.80	
	/	1000MHz ~ 6000MHz	4.13	

1.4 ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35 °C
Relative Humidity:	30~60 %
Air Pressure:	86-106 kPa

Page 8 of 53

Report No.: UNIA22080915ER-01

2 GENERAL INFORMATION

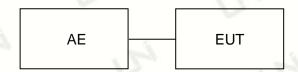
2.1 GENERAL DESCRIPTION OF EUT

The following information of EUT submitted and identified by applicant:

Transmitter/Receiver (TX/RX)

Transmitter/Receiver (12	VKV)
Product:	Wireless Headset
Trade Name:	N/A
Main Model:	X10S
Additional Model:	JH-TWS30
Model Difference:	All model's the function, software and electric circuit are the same, only with a product color and model named different. Test sample model: X10S.
Frequency Range:	BT: 2402~2480MHz
Number of Channels:	79CH
Modulation Type:	BR: ⊠GFSK EDR: ⊠π /4-DQPSK, ⊠8DPSK
Bluetooth Version:	V5.1
Antenna designation:	Internal Antenna
Antenna Gain:	3.0dBi
Power supply:	DC 5V by adapter DC 3.7V by battery
Product Description:	The EUT is a Wireless Headset. Based on the application, features, or specification exhibited in User's Manual, more details of EUT technical specification, please refer to the User's Manual.

I/O Port Information (⊠Applicable □Not Applicable)


I/O Port Type	Number	
USB	1	

2.2 DESCRIPTION OF THE TEST MODES

No.	EMI Test mode description	Worst
1	Charging mode	V
2	BT mode	V
No.	EMS Test mode description	Worst
1	Charging mode	V
2	BT mode	V

2.3 DESCRIPTION OF TEST SETUP

Note: The EUT tested system was configured as upper figure, unless otherwise a special operating condition is specified in the following during the testing.

2.4 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Power Cable Length	Note
E-1	Wireless Headset	N/A	X10S	50cm	EUT
E-2	Adapter	Xiaomi	12	=3	AE
E-3	Phone	HUAWEI		/-3	AE

Note:

- 1. The support equipment was authorized by Declaration of Confirmation.
- 2. All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

2.5 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
		Conduction Emi	issions Measuremer	nt	
1	Conducted Emission Test Software	EZ-EMC	Ver.CCS-3A1-CE	N/A	N/A
2	AMN	Schwarzbeck	NNLK8121	8121370	2022.09.22
3	AAN	TESEQ	T8-Cat6	38888	2022.09.22
4	Pulse Limiter	CYBRTEK	EM5010	E115010056	2023.05.17
5	EMI Test Receiver	Rohde&Schwarz	ESCI	101210	2022.09.22
		Radiated Emis	sions Measurement	1-7	_1
1	Radiated Emission Test Software	EZ-EMC	Ver.CCS-03A1	N/A	N/A
2	Horn Antenna	Sunol	DRH-118	A101415	2023.09.27
3	Broadband Hybrid Antenna	Sunol	JB1	A090215	2024.02.26
4	PREAMP	HP	8449B	3008A00160	2022.09.22
5	PREAMP	HP	8447D	2944A07999	2023.05.17
6	EMI Test Receiver	Rohde&Schwarz	ESR3	101891	2022.09.22
7	MXA Signal Analyzer	Keysight	N9020A	MY51110104	2022.09.22
8	Active Loop Antenna	Com-Power	AL-310R	10160009	2023.07.25
9	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2023.05.23
10	Horn Antenna	A-INFOMW	LB-180400-KF	J211060660	2022.09.27
11	Loop Antenna	Beijing daze Technology	ZN30401	13015	2022.09.22
12	EM Clamp	Schwarzbeck	MDS21	03350	2022.09.27
		Harmonic / Fl	icker Measurement		
1	Power Analyzer	California Instrumnets	PACS-1	X71719	2022.11.29
2	AC Power Source	California Instrumnets	5001ix	HK53570	2022.09.22
		Electrostati	c Discharge Test		1
1	ESD Generator	EVERFINE	EMS61000-2A	P185811CA837112 1	2022.09.23
		R	S Test		
1	Power Meter	Agilent	E4419B	QB4331226	2022.10.10
2	Power Sensor	Agilent	8481A	MY41092622	2022.10.10
3	Power Sensor	Agilent	8481A	US37296783	2022.10.10
4	Signal Generator	Agilent	N5182A	MY46240556	2022.10.10
5	Power Amplifier	MICOTOP	MPA-80-1000-250	1711489	2022.10.10
6	Power Amplifier	MICOTOP	MPA-1000-3000-7 5	1711488	2022.10.10
7	Power Amplifier	MICOTOP	MPA-3000-6000-5 0	MPA1706275	2022.10.10
8	Bilog Antenna	TESEQ	CBL6111D	34678	2022.10.10
9	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2023.05.23

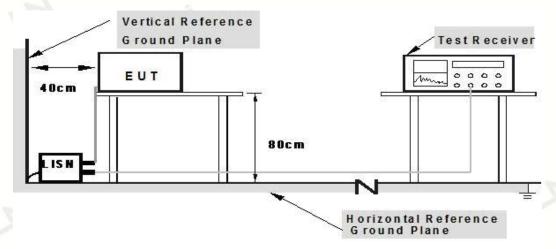
Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
	-	Electrical Fast Trans	sient/Burst Immuni	ty Test	120
1	EMS Test Control System	Shanghai Lioncel	SCU-614AS	SCU614S0160601	N/A
2	EFT/B Generator	Shanghai Lioncel	EFT-404S	EFT404S0160601	2022.09.22
	- 1	Su	rge Test		1
1	EMS Test Control System	Shanghai Lioncel	SCU-614AS	SCU614S0160601	N/A
2	Surge Generator	Shanghai Lioncel	LSG-506S	LSG506S0160601	2022.09.22
3	CDN	Shanghai Lioncel	CDN-532S	CDN532S0160601	2022.09.22
		C	S Test	[-]	-1
1	CS	SCHLODER	CDG-6000-25	126A1280/2014	2022.10.10
2	CDN	SCHLODER	CDN-M2+3	A2210275/2014	2022.10.10
3	EM Clamp	SCHLODER	EMCL-20	132A1283	2022.10.10
4	Attenuator	Nemtest	ATT-6DB-100	A100W224	2022.10.10
5	Audio Analyzer	R&S	UPL	100419	2022.10.10
6	Universal Radio Communication Tester	R&S	CMW500	117239	2022.10.10
7	Universal Radio Communication Tester	R&S	CMU200	111764	2022.10.10
8	Audio Analyzer	R&S	UPL	100689	2022.10.10
9	Audio Breakthrough Shielding Box	SKET	SB_ABT/C35	N/A	2022.10.10
10	Ear Simulator	SKET	AE_ABT/C35	N/A	2022.10.10
11	Mouth Simulator	SKET	AM_ABT/C35	N/A	2022.10.10
12	1KHz Standard Source	SKET	MSC_ABT/C35	N/A	2022.10.10
	-1	Power-frequenc	y magnetic fields T	est	
1	Magnetic Field Test System	Shanghai Lioncel	PMF801C-T	PMF801C-T016070 1	2022.11.18
		Voltage dips a	nd interruptions Te	st	
1	Voltage SAG Simulator	Shanghai Lioncel	VDS-1101	VDS11010160601	2022.09.22
2	Adjustable Power Supply	Shanghai Lioncel	RGL-210	RGL2100151001	N/A

3 CONDUCTED EMISSIONS MEASUREMENT

3.1 CONDUCTED EMISSION LIMIT

_	Maximum RF Line Voltage(dBμV)						
Frequency (MHz)	CLA	SS A	CLA	SS B			
(**** 12)	Q.P.	Ave.	Q.P.	Ave.			
0.15~0.50	79	66	66~56*	56~46*			
0.50~5.00	73	60	56	46			
5.00~30.0	73	60	60	50			

Report No.: UNIA22080915ER-01


Note:

- 1. The tighter limit applies at the band edges.
- 2.The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver:

Receiver Parameters	Setting <u></u>
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.2 TEST SETUP

Note: 1.Support units were connected to second LISM.

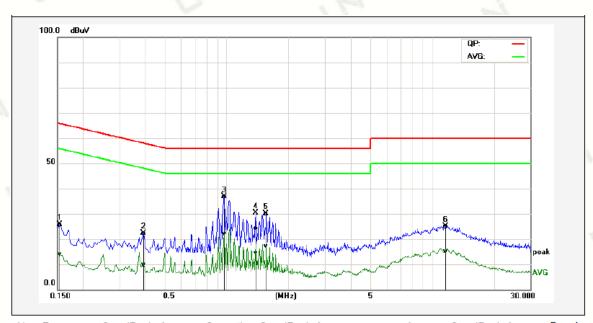
2.Both of LISMs (AMM) are 80 cm from EUT and at least 80 from other units and other metal planes

Page 13 of 53

3.3 TEST PROCEDURE

1.The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

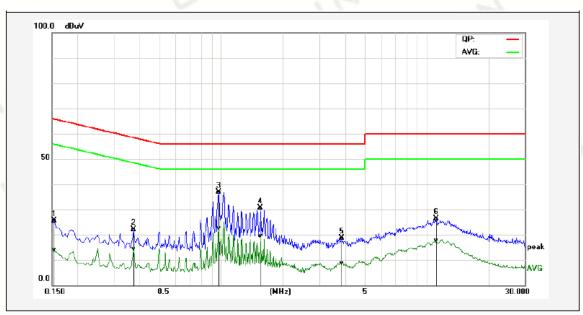
Report No.: UNIA22080915ER-01


- 2.Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 3.I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 4. For the actual test configuration, please refer to the related Item EUT Test Photos.

3.4 TEST RESULT

PASS

Temperature:	24°C	Relative Humidity:	48%
Test Voltage:	AC 230V, 50Hz	Pressure:	1010hPa
Test Mode:	Mode 1	Phase:	Line



	No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average		Average	QuasiPeak	Average	Remark
			reading	reading	factor	result	result	limit	limit	margin	margin	
ľ		(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
	1P	0.1540	15.74	3.80	10.01	25.75	13.81	65.78	55.78	-40.03	-41.97	Pass
	2P	0.3940	12.50	-0.10	10.00	22.50	9.90	57.98	47.98	-35.48	-38.08	Pass
	3*	0.9740	26.76	12.12	10.02	36.78	22.14	56.00	46.00	-19.22	-23.86	Pass
	4P	1.3820	14.41	4.25	10.06	24.47	14.31	56.00	46.00	-31.53	-31.69	Pass
	5P	1.5580	20.01	7.24	10.01	30.02	17.25	56.00	46.00	-25.98	-28.75	Pass
	6P	11.5860	15.04	4.93	10.15	25.19	15.08	60.00	50.00	-34.81	-34.92	Pass

Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result - Limit.

Temperature:	24°C	Relative Humidity:	48%
Test Voltage:	AC 230V, 50Hz	Pressure:	1010hPa
Test Mode:	Mode 1	Phase:	Neutral

	No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
Ī		(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
	1P	0.1540	15.60	3.79	10.01	25.61	13.80	65.78	55.78	-40.17	-41.98	Pass
	2P	0.3740	12.06	4.50	9.99	22.05	14.49	58.41	48.41	-36.36	-33.92	Pass
		0.9740	26.82	12.51	10.02	36.84	22.53	56.00	46.00	-19.16	-23.47	Pass
	4P	1.5580	20.69	9.27	10.01	30.70	19.28	56.00	46.00	-25.30	-26.72	Pass
	5P	3.8540	8.62	-1.44	10.06	18.68	8.62	56.00	46.00	-37.32	-37.38	Pass
	6P	11.1940	16.21	7.59	10.12	26.33	17.71	60.00	50.00	-33.67	-32.29	Pass

Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result - Limit.

Page 16 of 53

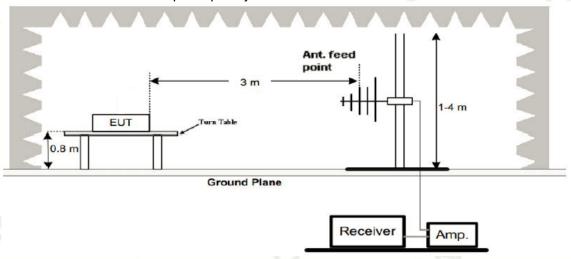
4 RADIATED EMISSIONSMEASUREMENT

4.1 RADIATION EMISSION LIMIT

Below 1000MHz:

	Clar	no	Close P		
-	Clas	ss A	Class B		
Frequency (MHz)	10m	3m	10m	3m	
	dBuV/m	dBuV/m	dBuV/m	dBuV/m	
30~230	40	50	30	40	
230~1000	47	57	37	47	

Report No.: UNIA22080915ER-01

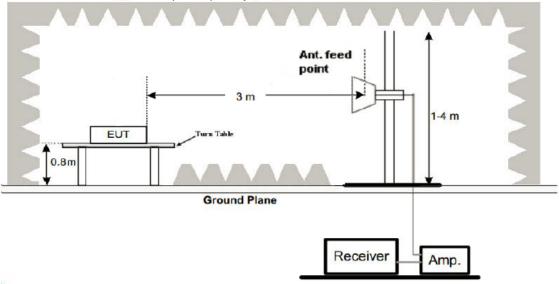

Above1000MHz:

_	Clas	ss A	Class B		
Frequency (MHz)	PK	AV	PK	AV	
(1411 12)	dBuV/m	dBuV/m	dBuV/m	dBuV/m	
1000~3000	76	56	70	50	
3000~6000	80	60	74	54	

- 1. The tighter limit applies at the band edges. 2. Emission level (dBuV/m)=20log Emission level (uV/m).

4.2 TEST SETUP

1. Radiated Emission Test-Up Frequency Below 1000MHz



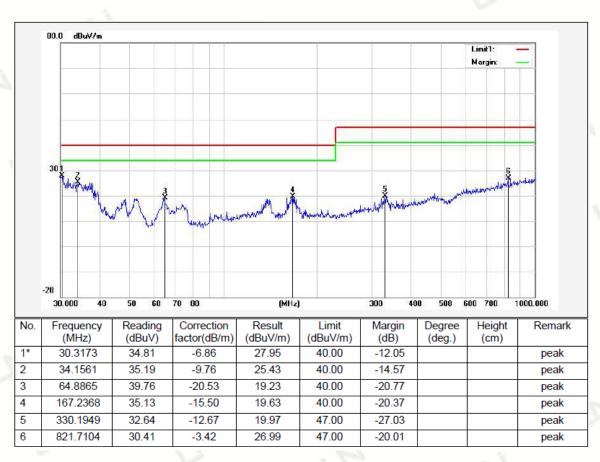
Page 17 of 53

Report No.: UNIA22080915ER-01

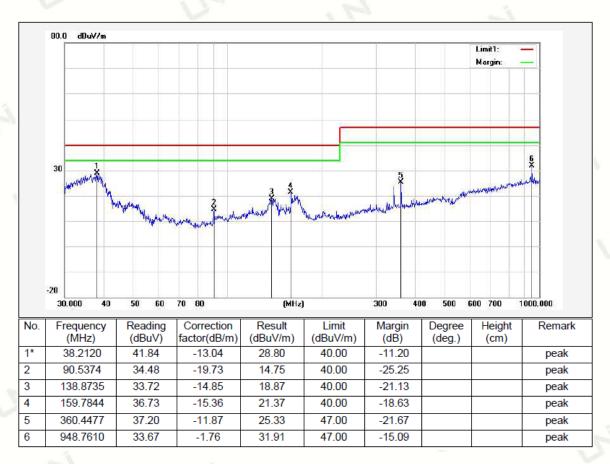
2. Radiated Emission Test-Up Frequency Above 1000MHz

4.3 TEST PROCEDURE

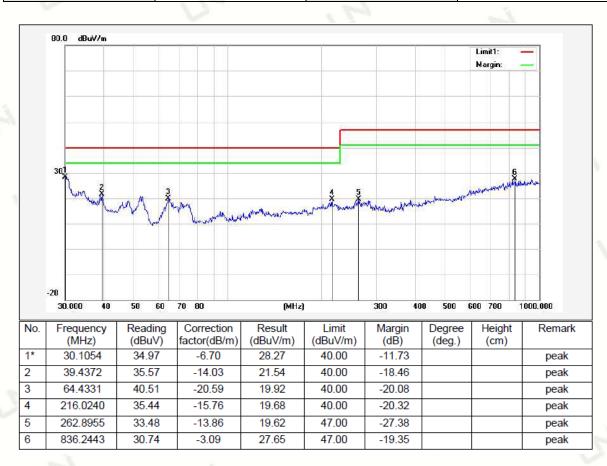
- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3. The height of antenna is varied from 1 meter to 4 meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1GHz.
- 6. For the actual test configuration, please refer to the related Item EUT Test Photos.


4.4 TEST RESULT

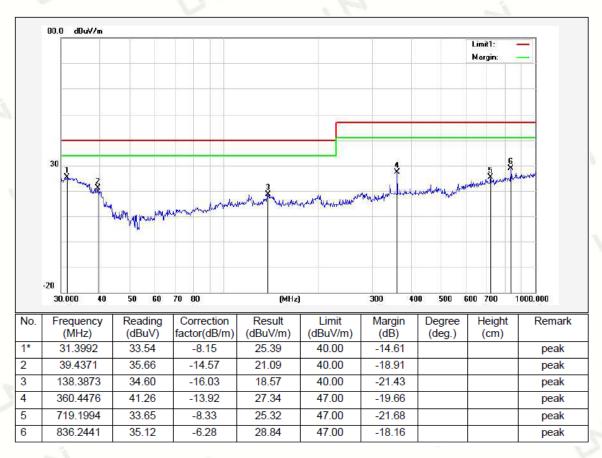
PASS


Below 1000MHz Test Results:

Temperature:	24°C	Relative Humidity:	48%
Test Voltage:	AC 230V, 50Hz	Pressure:	1010hPa
Test Mode:	Mode 1	Polarization:	Horizontal


Temperature:	24°C	Relative Humidity:	48%
Test Voltage:	AC 230V, 50Hz	Pressure:	1010hPa
Test Mode:	Mode 1	Polarization:	Vertical

Remark: Result = Reading Level + Factor, Margin = Result - Limit Factor = Ant. Factor + Cable Loss - Pre-amplifier



Temperature:	24°C	Relative Humidity:	48%
Test Voltage:	DC 3.7V	Pressure:	1010hPa
Test Mode:	Mode 2	Polarization:	Horizontal

Temperature:	24°C	Relative Humidity:	48%
Test Voltage:	DC 3.7V	Pressure:	1010hPa
Test Mode:	Mode 2	Polarization:	Vertical

Remark: Result = Reading Level + Factor, Margin = Result - Limit Factor = Ant. Factor + Cable Loss - Pre-amplifier

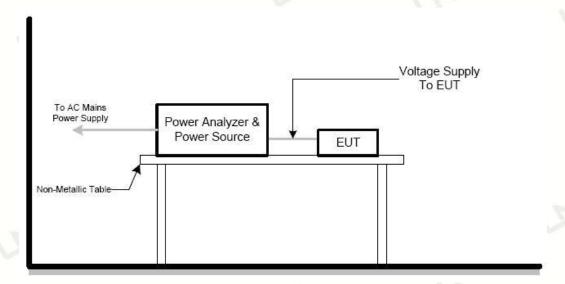
Above 1000MHz Test Results:

Note: The peak value is too low against the limit, so the test data is not record.

Page 22 of 53

5 HARMONICS CURRENT

5.1 HARMONICS CURRENT LIMIT


	Limits for Class A Equipment			
Harmonics Order n	Max. permissible harmonic current (A)			
12	Odd harmonics			
3	2.30			
5	1.14			
7	0.77			
9	0.40			
11	0.33			
13	0.21			
15≤n≤39	0.15×15/n			
D	157			
2	1.08			
4	0.43			
6	0.30			
8≤n≤40	0.23×8/n			

Note:

- 1. According to section 5 of EN IEC 61000-3-2: 2019, the EUT is Class A equipment.
- 2. The above limits are for all applications having an active input power>75W. No limits apply for equipment with an active input power up to and including 75W.

5.2 TEST SETUP

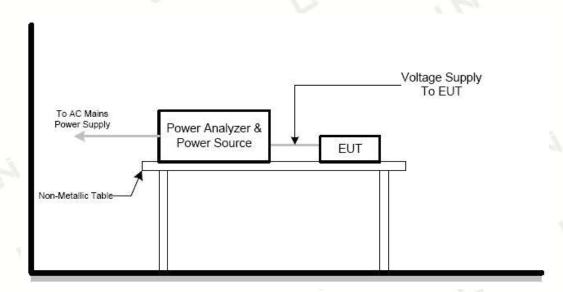
5.3 TEST PROCEDURE

- 1. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions.
- 2.The classification of EUT is according to section 5 of EN IEC 61000-3-2. The EUT is classified as follows: Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.
 - Class B: Portable tools. Portable tools.; Arc welding equipment which is not professional equipment. Class C: Lighting equipment.
 - Class D: Equipment having a specified power less than or equal to 600W of the following types: Personal computers and personal computer monitors and television receivers.
- The correspondent test program of test instrument to measure the current harmonicsemanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

5.4 TEST RESULT

N/A

Note: The above limits for all equipment except for lighting equipment having an active input power>75 W and no limits apply for equipment with an active input power up to and including 75W.


6 VOLTAGE FLUCTUATION AND FLICKERS

6.1 VOLTAGE FLUCTUATION AND FLICKERS LIMIT

70,			
Tests	Limit	Descriptions	
resis	EN 61000-3-3	- Descriptions	
Pst	≤ 1.0,Tp= 10 min.	Short Term Flicker Indicator	
Plt	≤0.65, Tp=2 hr.	Long Term Flicker Indicator	
Tdt(s)	≤ 3.3%	Relative Steady-State V-Chang	
dmax(%)	≤ 4%	Maximum Relative V-Chang	
dc(%)	≤ 3.3% for > 500 ms	Relative V-change Characteristic	

Report No.: UNIA22080915ER-01

6.2 TEST SETUP

6.3 TEST PROCEDURE

- 1. Fluctuation and Flickers Test:
 Tests was performed according to the Test Conditions/Assessment of Voltage Fluctuationsspecified in Clause 6.0/4.0 of EN 61000-3-3 depend on which standard adopted for compliance measurement.
- 2. All types of voltage fluctuation in this report are assessed by direct measurement using flicker-meter.

Page 25 of 53

6.4 TEST RESULT

Temperature:	22°C	Relative Humidity:	48%
Test Voltage:	AC 230V, 50Hz	Pressure:	1010hPa
Test Mode:	Mode 1	D.	7

Test Parameter	Measurement Value	Limit	Result
Pst	0.04	1.0	Pass
Plt	0.01	0.65	Pass
Tdt(s)	0.02	0.5	Pass
dmax(%)	0.13%	4%	Pass
dc(%)	0.09%	3.3%	Pass

Page 26 of 53 Report No.: UNIA22080915ER-01

7 EMC IMMUNITY TEST

7.1 DESCRIPTION OF PERFORMANCE CRITERIA

The performance criteria are used to take a decision on whether a radio equipment passes or fails immunity tests.

For the purpose of the present document two categories of performance criteria apply:

- Performance criteria for continuous phenomena.
- Performance criteria for transient phenomena.

7.2 GENERAL PERFORMANCE CRITERIA

7.2.1 Performance criteria for continuous phenomena

During the test, the equipment shall:

- · continue to operate as intended;
- · not unintentionally transmit;
- not unintentionally change its operating state;
- not unintentionally change critical stored data.

7.2.2 Performance criteria for transient phenomena

For all ports and transient phenomena with the exception described below, the following applies:

- The application of the transient phenomena shall not result in a change of the mode of operation (e.g. unintended transmission) or the loss of critical stored data.
- · After application of the transient phenomena, the equipment shall operate as intended.

For surges applied to symmetrically operated wired network ports intended to be connected directly to outdoor lines the following criteria applies:

- For products with only one symmetrical port intended for connection to outdoor lines, loss of function is allowed, provided the function is self-recoverable, or can be otherwise restored. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.
- For products with more than one symmetrical port intended for connection to outdoor lines, loss of function
 on the port under test is allowed, provided the function is self-recoverable. Information stored in non-volatile
 memory, or protected by a battery backup, shall not be lost.

For a 0 % residual voltage dip tests the following performance criteria apply:

• The performance criteria for transient phenomena shall apply.

For a 70 % residual voltage dip and voltage interruption tests, the following performance criteria apply:

- in the case where the equipment is fitted with or connected to a battery back-up, the performance criteria for transient phenomena shall apply;
- in the case where the equipment is powered solely from the AC mains supply (without the use of a parallel battery back-up) volatile user data may have been lost and if applicable the communication link need not to be maintained and lost functions should be recoverable by user or operator;
- no unintentional responses shall occur at the end of the test, when the voltage is restored to nominal;
- in the event of loss of function(s) or in the event of loss of user stored data, this fact shall be recorded.

Page 27 of 53

7.3 Performance Table

EN 301 489-17 Performance criteria				
Criteria During Test		After Test (i.e. as a result of the application of the test)		
А	Shall operate as intended. (see note). Shall be no loss of function. Shall be no unintentional transmissions.	Shall operate as intended. Shall be no degradation of performance. Shall be no loss of function. Shall be no loss of critical stored data.		
В	May be loss of function.	Functions shall be self-recoverable. Shall operate as intended after recovering. Shall be no loss of critical stored data.		
С	May be loss of function.	Functions shall be recoverable by the operator. Shall operate as intended after recovering. Shall be no loss of critical stored data.		

Report No.: UNIA22080915ER-01

The performance criteria A shall apply for continuous phenomena.

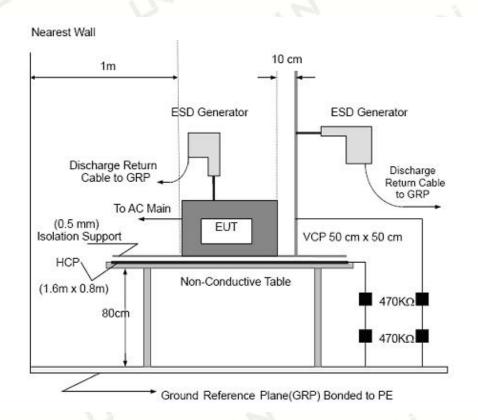
The performance criteria B shall apply for transient phenomena, except for voltage dips greater than or equal to 100 ms and voltage interruptions of 5 000 ms duration, for which performance criteria C shall apply. Where the EUT is a transmitter in standby mode or receive mode, unintentional transmission shall not occur during the test.

Note: Operate as intended during the test allows a level of degradation in accordance with the Minimum performance level.

Minimum performance level

For equipment that supports a PER or FER, the minimum performance level shall be a PER or FER less than or equal to 10 %.

For equipment that does not support a PER or a FER, the minimum performance level shall be no loss of the wireless transmission function needed for the intended use of the equipment.


8 ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD)

8.1 TEST SPECIFICATION

Basic Standard:	EN 61000-4-2	
Discharge Impedance:	330 ohm / 150 pF	
Required Performance:	В	
Discharge Voltage:	Air Discharge: 2kV/4kV/8kV (Direct) Contact Discharge: 2kV/4kV (Direct/Indirect)	
Polarity:	Positive & Negative	
Number of Discharge:	Air Discharge: min. 20 times at each test point Contact Discharge: min. 200 times in total	
Discharge Mode:	Single Discharge	
Discharge Period:	1 second minimum	

Report No.: UNIA22080915ER-01

8.2 TEST SETUP

Page 29 of 53

Report No.: UNIA22080915ER-01

Note:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with $940k\Omega$ total impedance. The equipment under test, was installed in a representative system as described in section 7 of EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of 0.8-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of EN 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1 meter thickness. The GRP was consisted of a sheet of aluminum that is at least 0.25mm thick, and extended at least 0.5 meters from the EUT on all sides.

8.3 TEST PROCEDURE

The test generator necessary to perform direct and indirect application of discharges to the EUTin the following manners:

1.Electrostatic discharges were applied only to those points and surfaces of the EUT that are accessible to users during normal operation The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.

The time interval between two successive single discharges was at least 1 second.

The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the EUT.

Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.

Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.

Vertical Coupling Plane (VCP):

The coupling plane, of dimensions 0.5m x 0.5m, is placed parallel to, and positioned at a distance 0.1m from, the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge.

Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge.

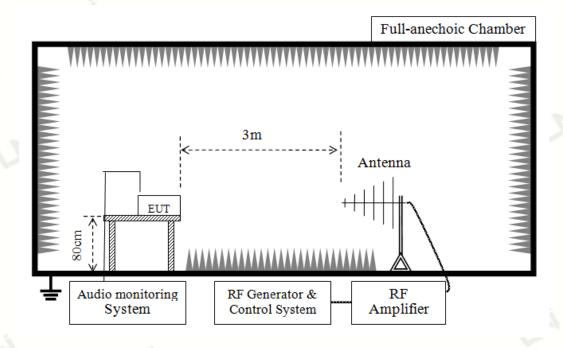
2. Air discharges at insulation surfaces of the EUT.

It was at least ten single discharges with positive and negative at the same selected point.

8.4 TEST RESULT

Temperature:	22°C	Relative Humidity:	48%
LIEST MOITAGE.	AC 230V, 50Hz DC 3.7V	Pressure:	1010hPa
Test Mode:	Mode 1 and Mode 2		

Times of Discharge	Voltage	Coupling	Test Performance	Performance Result	Result (Pass/Fail)
Mini 25 / Point	±4kV	Contact Discharge	No function loss	Α	Pass
Mini 25 / Point	±4kV	Indirect Discharge HCP (Front)	No function loss	А	Pass
Mini 25 / Point	±4kV	Indirect Discharge HCP (Left)	No function loss	Α	Pass
Mini 25 / Point	±4kV	Indirect Discharge HCP (Back)	No function loss	Α	Pass
Mini 25 / Point	±4kV	Indirect Discharge HCP (Right)	No function loss	Α	Pass
Mini 25 / Point	±4kV	Indirect Discharge VCP (Front)	No function loss	А	Pass
Mini 25 / Point	±4kV	Indirect Discharge VCP (Left)	No function loss	Α	Pass
Mini 25 / Point	±4kV	Indirect Discharge VCP (Back)	No function loss	Α	Pass
Mini 25 / Point	±4kV	Indirect Discharge VCP (Right)	No function loss	А	Pass
Mini 25 / Point	±8kV	Air Discharge	No function loss	Α	Pass


9 RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNITY TEST (RS)

Report No.: UNIA22080915ER-01

9.1 TEST SPECIFICATION

Basic Standard:	EN 61000-4-3
Required Performance:	A
Frequency Range:	80 MHz ~ 6000 MHz
Field Strength:	3 V/m
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of fundamental
Polarity of Antenna:	Horizontal and Vertical
Test Distance:	3 m
Antenna Height:	1.55 m
Dwell Time:	1.5x 10 ⁻³ decade/s

9.2 TEST SETUP

Note:

TABLE-TOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of EN 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of EN 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

9.3 TEST PROCEDURE

The EUT and support equipment, which are placed on a table that is 0.8 meter above ground and the testing was performed in a fully-anechoic chamber.

The testing distance from antenna to the EUT was 3 meters.

The other condition need as following manners:

- 1.The frequency range is swept from 80 MHz to 6000 MHz with the signal 80% amplitude modulated with a 1kHz sine wave. The rate of sweep did not exceed 1.5x 10⁻³ decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

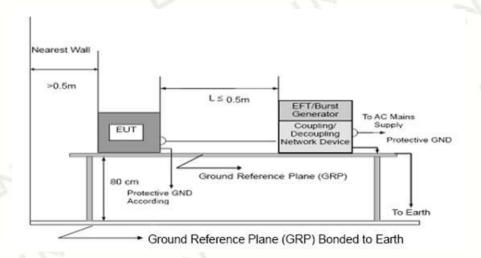
9.4 TEST RESULT

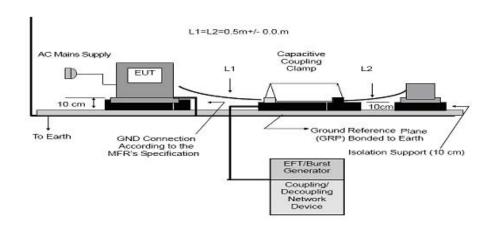
Temperature:	22°C	Relative Humidity:	48%
LIBET MOITAGE.	AC 230V, 50Hz DC 3.7V	Pressure:	1010hPa
Test Mode:	Mode 1 and Mode 2		

Frequency Range (MHz)	RF Field Position	R.F. Field Strength	Azimuth	Performance Result	Result (Pass/Fail)	
, ,	-7		Front	6		
00,0000	11/1/	3 V/m (rms)	Rear		DAGG	
80~6000	H/V	AM Modulated 1000Hz, 80%	Left	Α	PASS	
	17.	- 1	Right			

Note: "A" stand for, during test, operate as intended no loss of function, no degradation of performance, no unintentional transmissions and after test, no degradation of performance, no loss of function, no loss of stored data or user programmable functions.

- 1) N/A denotes test is not applicable in this test report.
- 2) Criteria A: There was no change operated with initial operating during the test.
- 3) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 4) Criteria C: The system shut down during the test.


10 ELECTRICAL FAST TRANSIENT IMMUNITY TEST (EFT)


10.1 TEST SPECIFICATION

Basic Standard:	EN 61000-4-4
Required Performance:	В
Test Voltage:	Power Line: 1 KV Signal/Control Line: 0.5 KV
Polarity:	Positive & Negative
Impulse Frequency:	5 kHz
Impulse Wave shape:	5/50 ns
Burst Duration:	15 ms
Burst Period:	300 ms
Test Duration:	Not less than 2 min.

Report No.: UNIA22080915ER-01

10.2 TEST SETUP

Page 34 of 53

Note:

TABLE-TOP EQUIPMENT

Table-top equipment and equipment normally mounted on ceilings or walls as well as built-inequipment shall be tested with the EUT located (0.1 ± 0.01) m above the ground referenceplane.

Report No.: UNIA22080915ER-01

Testing of large table-top equipment or multiple systems can be performed on the floor; maintaining the same distances as for the test setup of table-top equipment.

The test generator and the coupling/decoupling network shall be bonded to the ground reference plane.

The ground reference plane shall be a metallic sheet (copper or aluminium) of 0. 25 mmminimum thickness; other metallic materials may be used, but they shall have at least 0.65 mm minimum thickness.

The minimum size of the ground reference plane is 0.8 m x 1 m The actual size depends on the dimensions of the EUT.

The ground reference plane shall project beyond the EUT by at least 0.1 m on all sides.

The ground reference plane shall be connected to prolective earth (PE) for safety reasons.

The EUT shall be arranged and connected to satisfy its functional requirements, according to the equipment installation specifications.

The minimum distance between the EUT and all other conductive structures (including thegenerator, AE and the walls of a shielded room), except the ground reference plane, shall bemore than 0.5 m.

All cables to The EUT shall be placed on The insulation support 0.1 m above The groundreference plane. Cables not subject to electrical fast transients shall be routed as far aspossible from the cable under test to minimize the coupling between the cables.

The EUT shall be connected to the earthing system in accordance with the manufacturer's installation specifications; no additional earthing connections are allowed.

The connection impedance of the coupling/decoupling network earth cables to the groundreference plane and all bondings shall provide a low inductance.

Either a direct coupling network or a capacitive clamp shall be used for the application of thetest voltages. The test voltages shall be coupled to all of the EUT porls in turn including thosebetween two units of equipment involved in the test, unless the length of the interconnectingcable makes it impossible to test.

FLOOR-STANDING EQUIPMENT

When using the coupling clamp, the minimum distance between the coupling plates and allother conductive surfaces (including the generator), except the ground reference planebeneath the coupling clamp and beneath the EUT, shall be at least 0.5m.

The distance between any coupling devices and the EUT shall be (0.5 - 0/+0.1) m for tabletopequipment testing, and (1.0 ± 0.1) m for floor standing equipment, unless otherwise specified in product standards. When it is not physically possible to apply the distances mentioned above, other distances can be used and shall be recorded in the lest report.

The cable between the EUT and the coupling device, if detachable, shall be as short aspossible to comply with the requirements of this clause. If the manufacturer provides a cableexceeding the distance between the coupling device and the point of early of the EUT, theexcess length of this cable shall be bundled and situated at a distance of 0,1 m above the ground reference plane. When a capacitive clamp is used as a coupling device, the excesscable length shall be bundled at the AE side.

Parts of the EUT with interconnecting cables of a length less than 3 m, which are not tested, shall be placed on the insulating support. The parts of the EUT shall have a distance of 0.5 mbetween them. Excess cable length shall be bundled.

Page 35 of 53

10.3 TEST PROCEDURE

The EUT and support equipment, are placed on a table that is 0.8 meter & 0.1 meter above a metal ground plane measured 1m*1m min.

Report No.: UNIA22080915ER-01

The ground reference plane shall be a metallic sheet (copper or aluminium) of 0. 25 mm minimum thickness; other metallic materials may be used, but they shall have at least 0.65 mm minimum thickness.

The other condition need as following manners:

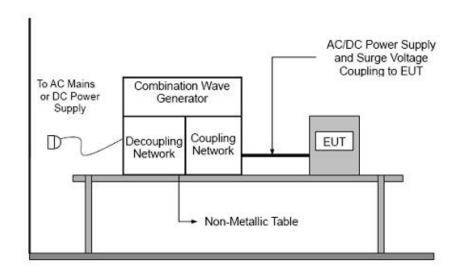
- 1. The length of power cord between the coupling device and the EUT should not exceed 1 meter.
- 2. Both positive and negative polarity discharges were applied.
- 3. The duration time of each test sequential was 2 minute.

10.4 TEST RESULT

Temperature:	22°C	Relative Humidity:	48%
Test Voltage:	AC 230V, 50Hz	Pressure:	1010hPa
Test Mode:	Mode 1	1 1-1	in the second

Coupling Line		Test level (kV)									
		0.5		1		2		4		Performance Result	Result (Pass/Fail)
		+	-	+	-	+	-	+	•		(- 200/- 211)
	1			Α	Α						PASS
	N			Α	Α				4	7	PASS
%	PE								1		N/A
AC line	L+N			Α	Α	10					PASS
0	L+PE				1	20				А	N/A
	N+PE										N/A
120	L+N+PE	. 70	l.								N/A
DC L	ine	V								17	N/A
Signal	Line										N/A

Page 36 of 53



11 SURGE IMMUNITY TEST (SURGE)

11.1 TEST SPECIFICATION

Basic Standard:	EN 61000-4-5
Required Performance:	В
Wave-Shape:	Combination Wave 1.2/50 us Open Circuit Voltage
Test Voltage:	Power line ~ line to line: 1kV line to ground: 2kV Telecommunication line: 0.5kV DC network power port:0.5kV
Surge Input/Output:	L-N, L-PE, N-PE
Generator Source:	(L-N)2 ohm between networks
Impedance:	(L-PE, N-PE)12 ohm between network and ground
Polarity:	Positive/Negative
Phase Angle:	0 /90/180/270°
Pulse Repetition Rate:	1 time / min. (maximum)
Number of Tests:	5 positive and 5 negative at selected points

11.2 TEST SETUP

Page 37 of 53

Report No.: UNIA22080915ER-01

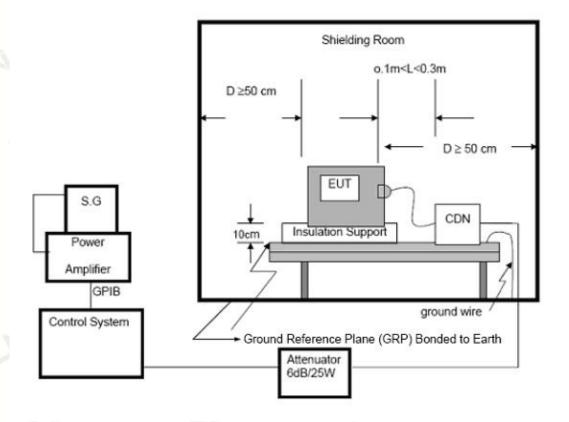
11.3 TEST PROCEDURE

- 1.For EUT power supply:
- 2. The surge is to be applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks shall be 2meters in length (or shorter).
- 3. For test applied to unshielded unsymmetrically operated interconnection lines of EUT:
- 4. The surge is applied to the lines via the capacitive coupling. The coupling /decoupling networks shall not influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).

11.4 TEST RESULT

Temperature:	22°C	Relative Humidity:	48%
Test Voltage:	AC 230V, 50Hz	Pressure:	1010hPa
Test Mode:	Mode 1		1

			Test level									
Coupling Line		0.5	kV	1	kV	2	kV	4	kV	Performance Result	Result (Pass/Fail)	
		+	-	+	-	+	-	+	-	rtoodit	(i abon an)	
		0°		C	Α	Α			-	4	h.	-7
- 3	I NI	90°			Α	Α			1			DACC
2	L-N	180°			Α	Α					_	PASS
		270°			Α	Α					124	
- 4		0°										
AC	L DE	90°	Ž.					3				NI/A
line	L-PE	180°					V	2.				N/A
	-3	270°									Α	
14	0	0°		6						ς.		
	N-PE	90°	-					-	S		U	
A.	IN-PE	180°										N/A
	U	270°		4	7	1					-3	
	DC Line									1	7.	N/A
	Signal Line	-1										N/A


12 CONDUCTED RADIO FREQUENCY DISTURBANCES IMMUNITY TEST (CS)

Report No.: UNIA22080915ER-01

12.1 TEST SPECIFICATION

Basic Standard:	EN 61000-4-6
Required Performance:	A
Frequency Range:	0.15 MHz ~ 80 MHz
Field Strength:	3 V
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of fundamental
Dwell Time:	1.5x 10 ⁻³ decade/s

12.2 TEST SETUP

Note:

FLOOR-STANDING EQUIPMENT

The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

Page 39 of 53

12.3 TEST PROCEDURE

The EUT and support equipment, are placed on a table that is 0.8 meter & 0.1 meter above a metal ground plane measured 1m*1m min.

Report No.: UNIA22080915ER-01

The other condition need as following manners:

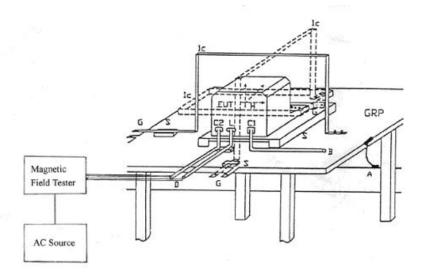
- 1. The EUT shall be tested within its intended operating and climatic conditions.
- 2.An artificial hand was placed on the hand-held accessory and connected to the ground reference plane.
- 3.One of the CDNs not used for injection was terminated with 50Ω , providing only one return path. All other CDNs were coupled as decoupling networks.
- 4. The frequency range is swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal is modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. Where the frequency is swept incrementally, the step size shall not exceed 1% of the preceding frequency value.
- 5. The dwell time of the amplitude modulated carrier at each frequency shall not be less than the time necessary for the EUT to be exercised and to respond, but shall in no case be less than 0.5 s. The sensitive frequencies (e.g. clock frequencies) shall be analyzed separately.
- Attempts should be made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.

12.4 TEST RESULT

Temperature:	22°C	Relative Humidity:	48%
Test Voltage:	AC 230V, 50Hz	Pressure:	1010hPa
Test Mode:	Mode 1		

Test Ports (Mode)	Freq. Range MHz)	Field Strength	Performance Result	Result (Pass/Fail)
Input/ Output AC. Power Port	0.15 ~ 80	3V (rms)	Α	PASS
Input/ Output DC. Power Port	0.15 ~ 80	AM Modulated 1000Hz, 80%	N/A	N/A
Signal Line	0.15 ~ 80		N/A	N/A

Note: "A" stand for, during test, operate as intended no loss of function, no degradation of performance, no unintentional transmissions and after test, no degradation of performance, no loss of function, no loss of stored data or user programmable functions.


13 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST (PFMF)

Report No.: UNIA22080915ER-01

13.1 TEST SPECIFICATION

Basic Standard:	EN 61000-4-8	
Required Performance:	A	
Frequency Range:	50Hz	
Field Strength:	3 A/m	
Observation Time:	1 minute	0
Inductance Coil:	Rectangular type, 1mx1m	n

13.2 TEST SETUP

Note:

TABLE-TOP EQUIPMENT

The equipment shall be subjected to the test magnetic field by using the induction coil of standard dimension (1 m x 1 m). The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

FLOOR-STANDING EQUIPMENT

The equipment shall be subjected to the test magnetic field by using induction coils of suitable dimensions. The test shall be repeated by moving and shifting the induction coils, in order to test the whole volume of the EUT for each orthogonal direction. The test shall be repeated with the coil shifted to different positions along the side of the EUT, in steps corresponding to 50 % of the shortest side of the coil. The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

Page 41 of 53

13.3 TEST PROCEDURE

The EUT and support equipment, are placed on a table that is 0.8 meter & 0.1 meter above a metal ground plane measured 1m*1m min.

Report No.: UNIA22080915ER-01

The other condition need as following manners:

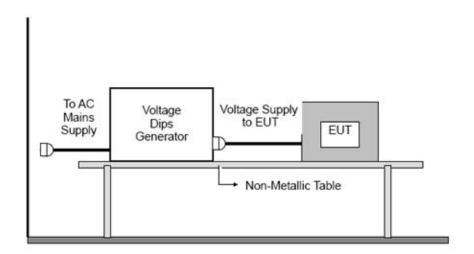
- 1. The equipment cabinets shall be connected to the safety earth directly on the GRP via the earth terminal of the EUT.
- 2.The cables supplied or recommended by the equipment manufacturer shall be used. 1 meterof all cables used shall be exposed to the magnetic field.

13.4 TEST RESULT

Temperature:	22°C	Relative Humidity:	48%
LIEST VOITAGE.	AC 230V, 50Hz DC 3.7V	Pressure:	1010hPa
Test Mode:	Mode 1 and Mode 2	120	rd .

Test Mode	Test Level (A/m)	Inductive Coil	Duration(s)	Performance Result	Result	
Enclosure	3	Х	60	А	PASS	
Enclosure	3	Υ	60	Α	PASS	
Enclosure	3	Z	60	Α	PASS	

Page 42 of 53


14 VOLTAGE INTERRUPTION/DIPS IMMUNITY TEST (DIPS)

14.1 TEST SPECIFICATION

Basic Standard:	ENIEC 61000-4-11
Required Performance:	B (For 100% Voltage Dips, 0.5 Cycle) B (For 100% Voltage Dips, 1 Cycle) C (For 30% Voltage Dips, 25 Cycles) C (For 100% Voltage Interruptions, 250 Cycles)
Test Duration Time:	Minimum three test events in sequence
Interval between Event:	Minimum ten seconds
Phase Angle:	0°/45°/90°/135°/180°/225°/270°/315°/360°
Test Cycle:	3 times

Report No.: UNIA22080915ER-01

14.2 TEST SETUP

Page 43 of 53

14.3 TEST PROCEDURE

The EUT shall be tested for each selected combination of test levels and duration with a sequence of three dips/interruptions with intervals of 10 s minimum (between each test event). Each representative mode of operation shall be tested. Abrupt changes in supply voltage shall occur at zero crossings of the voltage waveform.

Report No.: UNIA22080915ER-01

14.4 TEST RESULT

Temperature:	22°C	Relative Humidity:	48%
Test Voltage:	AC 230V, 50Hz	Pressure:	1010hPa
Test Mode:	Mode 1	. 1-1	- 1

Voltage Reduction	Duration (cycle)	Times	Interval (Sec)	Result (Pass/Fail)
Voltage dip 0%	0.5	3	10	PASS
Voltage dip 0%	1	3	10	PASS
Voltage dip 70%	25	3	10	PASS
Voltage interruptions	250	3	10	PASS

A: No degradation in the performance of the EUT was observed.

B: Stop charging during the test and self-recoverable after test.

C: Lost functions can be recoverable by user or operator.

Page 44 of 53 Report No.: UNIA22080915ER-01

15 PHOTO OF EUT

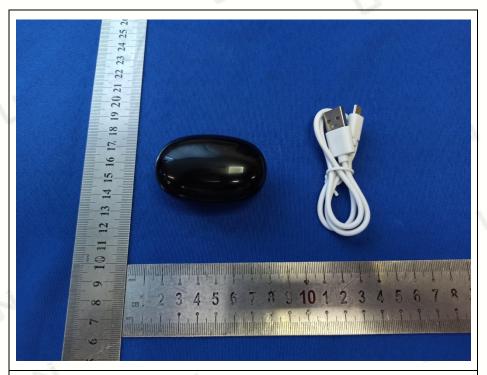
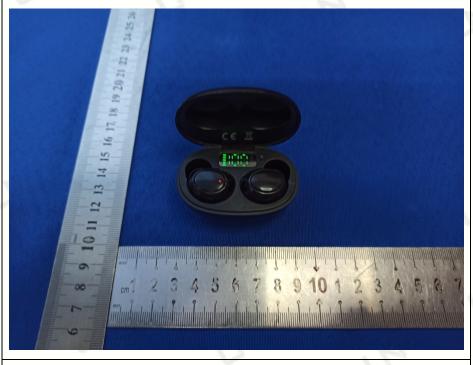



PHOTO 01

PHOTO 02

Page 45 of 53

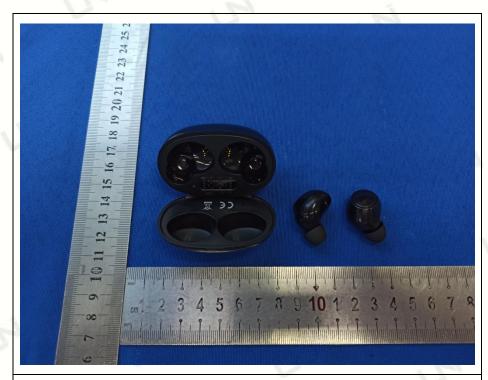
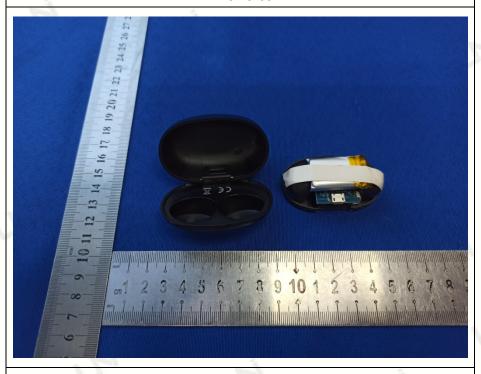



PHOTO 03

PHOTO 04

Page 46 of 53 Report No.: UNIA22080915ER-01

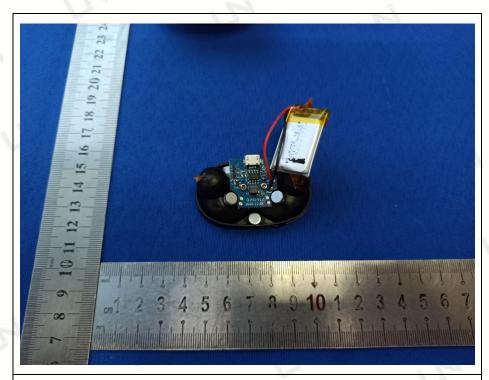
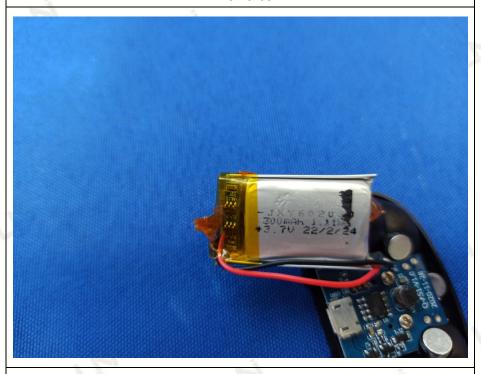



PHOTO 05

PHOTO 06

Page 47 of 53

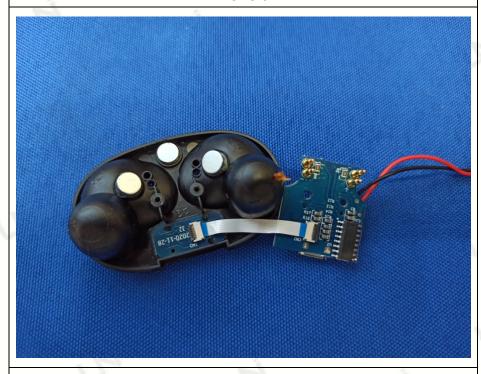



PHOTO 07

PHOTO 08

Page 48 of 53 Report No.: UNIA22080915ER-01

PHOTO 09

PHOTO 10

Page 49 of 53 Report No.: UNIA22080915ER-01

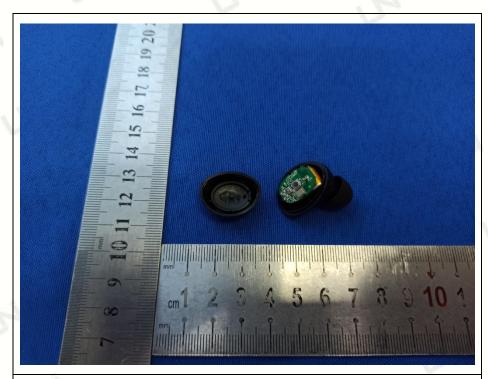
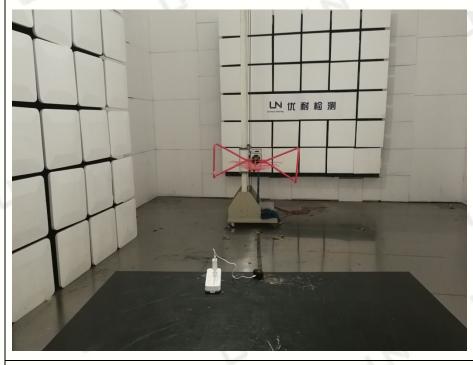


PHOTO 11

PHOTO 12


Page 50 of 53 Report No.: UNIA22080915ER-01

16 PHOTO OF TEST

PHOTO 01

PHOTO 02

Page 51 of 53

PHOTO 03

PHOTO 04

Page 52 of 53

11101000

End of Report

Page 53 of 53

Statement

- 1. This report must have the signature of the authorized signatory and the special seal of the report, otherwise it will be considered invalid. If there is no anti-counterfeiting electronic seal of the laboratory in the report in PDF format or it is displayed as "x", the report is invalid.
- 2. This report shall not be modified, added or deleted without authorization.
- 3. The results of this report are only valid for the EUT provided by Applicant to our laboratory for inspection (That is, EUT received by our laboratory. Without special explanation, it refers to the samples presented in the report "PHOTO OF EUT").
- 4.If there is any objection to the test data and conclusions of this report, please submit it in writing within 10 working days after the date of issuance of the report.
- 5. Without the written consent of the laboratory, this report shall not be copied (except for full copy), nor shall it be used as publicity materials or advertising.
- 6. The cover of the report is for decoration only, not included in the body of the report.
- 7. The paper report issued by our laboratory has the same effect as the electronic report. In case of any difference between the two, the electronic report shall prevail.
- 8. The Chinese and English reports issued by our laboratory have the same effect. In case of any difference in understanding, the Chinese version shall prevail.
- 9. Please provide the complete report documents issued by our laboratory when inquiring the report.
- 10.For cases where compliance is determined based on test values, when relevant specifications, standards, documents, and customers have no relevant requirements and no other special instructions, the test report issued by this laboratory is carried out in full value and adopts ILAC-G8:09 /2019 "Simple Acceptance Rule" for judgment.
- 11.In the People's Republic of China, when there is no CMA Accredited Symbol in this report, the report is only for scientific research, teaching or internal quality control activities.